• 沒有找到結果。

第四章 正交相位壓控振盪器

4.4 實作一 Series Coupling Quadrature VCO

4.4.3 模擬結果

Die photo

6 Pin DC Pad

_ _

IF IQ input

_ Out I _ Ou t Q

SSB SSB

圖4.22 3D trifilar series QVCO die photo 預計規格表

Item Spec Technology TMSC 0.13µm CMOS

Supply Voltage 1.2 V

Current of QVCO core 5.4 mA Current of Output buffer 12.84mA Power Consumption of core ~ 6.5mW

Tuning frequency range 4.49GHz~5.25GHz

KVCO 760MHz/V

Phase Noise -108dBc/Hz @ 1MHz offset Sideband rejection -32dB

FOM -173.8 Die size 1030µm× 1210µm

表4.1 3D trifilar series QVCO預計規格表

4.4.4結果與討論

由模擬結果顯示,相位雜訊在1MHz offset處為-108dBc/Hz,因為 相位雜訊與輸出功率有關係,VCO輸出較大功率時,會有較佳的相位 雜訊表現,若為了得到較大的輸出功率,我們可以要使VCO核心電路

(負阻抗)操作電流增大,使得回路增益變大而得到較大的輸出功 率,但相對的會使電路的消耗功率增大,而且根據[36]增加電流只在 振盪器是在inductance-limited的情況下,相位雜訊特性才會變好。

由模擬的sideband rejection得到是-32dB,假設VCO輸出正交訊號 的振幅大小皆相同的話,可以得到正交訊號的相位誤差約是3o,但若 振幅大小存在有誤差的話,相位誤差應是小於3o。Die size被量測上所 需的pad所限,導致面積較大,實際上VCO核心電路的面積只有 600x500μm2

4.5 實作二 Quadrature VCO Based on Trifilar Coupling (TSMC 0.18μm CMOS)

4.5.1 研究動機

使用series coupling的QVCO架構因為電晶體的疊接,所以需要較 高的操作電壓,但低壓操作為目前的趨勢,故有人提出直接使用變壓 器來達成二個VCO的訊號耦合,我們更進一步將共振腔的電感與耦合 用的變壓器整合在一起,再次使用trifilar這個一對二的雙壓器來達成 此概念,如此不僅可以降低操電壓更可以減少被動元件所佔的面積。

4.5.2 實作電路架構

圖4.23 QVCO based on trifilar coupling電路圖

上一節中我們提到需要一個passive SSB up-converter間接來量測 相位準度,而我們從外面注入低頻訊號IF正交四個相位的訊號,但在

這次實作中我們將主動式的balun整合在晶片中,所以只需從外面注

(3)Phase noise

圖4.27 QVCO based on trifilar coupling phase noise

(4) Side band rejection

圖4.28 QVCO based on trifilar coupling side band rejction

Chip performance

Item Spec Technology TMSC 0.18µm CMOS

Supply Voltage 1.2 V Current of QVCO core 35 mA Power Consumption of core 52.5mW

Tuning frequency range 4.7GHz~5.16GHz

KVCO 657MHz/V

Phase Noise -122.5dBc/Hz @ 1MHz offset Sideband rejection 33.7dB

FOM -180.1dBc Die size 1200µm× 1310µm

表4.2 QVCO based on trifilar coupling performance summary

Die photo

6 Pin DC Pad

IF IQ Input

_OutI

_OutQ

DC GND

SSB SSB

圖4.29QVCO based on trifilar coupling die photo

4.5.4結果與討論

實作一因為疊接架構,操作電壓需要1.2V,實作二的架構則只 須要0.7V 即可正常操作,但是為了相位雜訊最佳點的量測,工作電 壓需要提升至1.2V。

Side-band rejection 為 33.7dB,由圖 3.57 可以得知:假設在正交 訊號的大小皆相等的情況下,相位誤差約為2.5 度,但實際上正交訊 號大小並不會相等,則相位誤差會小於2.5 度;若假設正交訊號的相 位誤為0 度,則訊號的大小誤差為 0.35dB。相位雜訊為-122.5dBc/Hz

@ 1MHz offset,是可以接受的數字,但 FOM 只有 180.1dBc,主要的 原因是消耗功率的增加,因為當工作電壓由0.7V 提升到 1.2V 時,核 心電路的電流從24.8mA 增加到 35mA,消耗功率大幅的上升。

第五章

結論

本論文利用了 TSMC 0.18μm CMOS 之製程,實作與量測了不同 類型 Marchand balun 電路,不管是 0o, 0o或 0o, 180o的 Marchand,實 測結果與理論推導皆一致,需要較大耦合量的結構確實有較寬的頻 寬。除了 Marchand 測試件的實作以外,更利用 TSMC SiGe 0.35μm BiCMOS 製程將被動 Marchand 與主動混頻器結合,結果亦是相同。

在除頻器部分,採取了一個新型電流交換 D flip-flop 電路來達成 產生 50%工作週期的除五電路,並利用 TSMC SiGe 0.35μm BiCMOS 製程來驗證電路,結果與推測相符。在類比高速除頻器,我們則利用 Win 0.15m PHEMT 與 MHEMT 來實作 RFD 與 ILFD,其中 RFD 的實 作包含差動輸出的傳統 RFD 與正交輸出的 RFD,量測結果亦顯示可 高頻操作特性;而 ILFD 則實作了除 2 與除 3 的除頻器,模擬結果顯 示 ILFD 適合於高頻操作的特性與窄頻寬之特性。

最後,利用了 TSMC 0.18μm CMOS 與 TSMC 0.13μm CMOS 製程技術實作正交輸出的振盪器,電路利用了 trifilar 這個元件來達成 訊號的耦合,為新型的正交相位振盪器架構,量測結果顯示了這個新 型電路架構的可行性。

參考文獻

第二章:

[1] David Pozar, Microwave Engineering, 3rd Edition, NewYork: John Wiley & Sons, 1998.

[2] M. Shimozawa, K. Itoh, Y. Sasaki, H. Kawano, Y. Isota, and O. Ishida, “A Parallel Connected Marchand Balun Using Spiral Shaped Equal Length Coupled Lines,”

in IEEE MTT-S Int. Microwave Symp. Dig., vol. 4, June 1999, pp. 1737-1740.

[3] K. S. Ang, S. B. Economides, S. Nam, and I. D. Robertson, “A compact MMIC balun using spiral transformers,” in Asia Pacific Microwave Conference, Nov.

1999, vol. 3, pp. 655-658.

[4]C. Leong, K. S. Ang, and C. H. Lee, “A derivation of a class of 3-port baluns from symmetrical 4-port networks,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 1165–1168.

[5] J. R. Long , “Monolithic transformers for Silicon RF IC design,” IEEE J.

Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.

[6] T. C. Tseng, C. C. Meng, C. H. Change, C. K. Wu and G. W. Hung, “Monolithic Broadband Gilbert Micromixer with an Integrated Marchand Balun Using Standard Silicon IC Process,” IEEE Trans. Microwaves Theory and Techniques, vol. 54, no. 12, pp. 4362-4371, Dec. 2006.

[7] B. Gilbert, “The MICROMIXER: A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp.1412-1413, Sept. 1997.

[8] 張家宏, “被動分合波器與主動混頻器之整合及覆晶封裝之毫米波驅動放大器 設計與實作,” 交通大學碩士論文, 2006

第三章:

[9] Behzad Razavi, RF Microelectronics, New Jersey: Prentice-Hall, 1998

[10] Behzad Razavi, Design of Integrated Circuits for Optical Communications, New York: McGraw-Hill, 2002.

[11] A. Ismail and A. Abide, “A 3.1-to 8.2-GHz Zero-IF Receiver and Direct Frequency Synthesizer in 0.18µm SiGe BiCMOS for Mode-2 MB-OFDM UWB Communication,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2573-2582, Dec. 2006.

[12] U. Singh and M. Green, “Dynamics of High-Frequency CMOS Divider,” in IEEE

Int. Circuits and Systems Symp., May 2002, vol. 5, pp. V-421-V-424.

[13] T. Otsuji, M. Yoneyama, K. Murata and E. Sano, “A Super-Dynamic Flip-Flop Circuit for Broad-Band Applications up to 24 Gb/s Utilizing Production-Level 0.2-µm GaAs MESFET’s,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp.

1357-1362, Sept. 1997.

[14] J. C. Chien and L. H. Lu, “A 15-Gb/s 2:1 Multiplexer in 0.18µm CMOS,” IEEE Microwave and Wireless Components Letter, vol. 16, no. 10, pp. 558-560, Oct.

2006.

[15] R. Magoon and A. Molnar, “RF Local Oscillator Path for GSM Direct Conversion Transceriver with True 50% Duty Cycle Divide by Three and Active Third Harmonic Cancellation,”in IEEE Radio Frequency Integrated Circuits Symp., June 2002, pp. 23-26.

[16] S. C. Tseng, C. C. Meng and W. Y. Chen, “SSH and SHH GaInP/GaAs HBT Divide-by-3 Prescalers with True 50% Duty Cycle,” IEEE Electronics Letters, vol.

42, pp. 796-797, July 2006.

[17] R. L. Miller, “Fractional-Frequency Generators Utilizing Regenerative Modulation,” Proc. Insc. Radio., Eng., vol. 27, pp. 446-456, July 1939.

[18] J. Lee and B. Razavi, “ A 40-GHz Frequency Divider in 0.18µm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, April 2004.

[19] A. Mazzanti, L. Larcher and F. Svelto, “Balanced CMOS LC-tank Analog Frequency Dividers for Quadrature LO Generation,” in Proc. IEEE Custom Integrated Circuits Conf, Sept 2005, pp. 575-578.

[20] C. C. Lin and C. K. Wang, “A Regenerative Semi-Dynamic Frequency Divider for Mode-1 MB-OFDM UWB Hopping Carrier Generation,” in IEEE ISSCC Dig.

Tech. Papers, Feb. 2005, pp. 206-207.

[21] R. Adler, “A Study of Locking Phenomena in Oscillator,” Proc. IRE, vol. 34, pp.

351-357, June 1946.

[22] H. R. Rategh and T. H. Lee, “Superharmonic Injection-Locked Frequency Dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, June 1999.

[23] S. Verma, H. R. Rategh and T. H. Lee, “A Unified Model for Injection-Locked Frequency Dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015-1027, June 2003.

[24] W. Z. Chen and C. L. Kuo, “18GHz and 7GHz Superharmonic Injection-Locked Dividers in 0.25µm CMOS Technology,” in Proc. ESSCIRC, Sept. 2002, pp.

89-92.

[25] J. Jeong and Y. Kwon, “V-Band Harmonic Injection-Locked Frequency Divider Using Cross-Coupled FETs,” IEEE Microwave and Components Letters, vol. 14,

[26] H. Wu and L. Zhang, “A 16-to18GHz 0.18µm Epi-CMOS Divide-by-3 Injection-Locked Frequency Divider,” in IEEE ISSCC Dig. Tech. Papers, Feb.

2006, pp. 2482-2491.

[27] 張宇文, “高速除頻電路與正交相位振盪器,” 交通大學碩士論文, 2005 [28] 陳為昱, “異質接面雙極性電晶體 VBIC 模型參數萃取與高速前置除頻器之

實作,” 交通大學碩士論文, 2004 第四章

[29] B. Razavi, “A Study of Phase Noise in CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331-343, Mar. 1996.

[30] D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc.

IEEE, vol. 54, pp. 329-330, Feb. 1966.

[31] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, Feb. 1998.

[32] A. Rofougaran, J. Rael, M. Rofougaran and A. Abidi, “A 900MHz CMOS LC-Oscillator with Quadrature Outputs,” in Proc. ISSCC, Feb. 1996, pp.

392-393.

[33] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Carlo and V. Boccuzzi, “A Low-Phase-Noise 5-GHz CMOS Quadrature VCO Using Superharmonic Coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, July 2003.

[34] M. Zannoth, B. Kolb, J. Fenk and R. Weigel, “A Fully integrated VCO at 2 GHz,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1987-1991, Dec. 1998.

[35] P. Andreani, A. Bonfanti, L. Romano and C. Samori, “Analysis and Design of a 1.8-GHz LO Quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp.

1737-1747, Dec. 2002.

[36] D. Ham and A. Hajimiri, “Concepts and Methods in Optimization of Integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, June 2001.

[37] K. Kwok and H. C. Luong, “Ultra-Low-Voltage High-Performance CMOS VCOs Using Transformer Feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp.

652-660, Mar. 2005.

[38] A. W. L. Ng and H. C. Luong, “A 1V 17GHz 5mW Quadrature CMOS VCO Based on Transformer Coupling,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006 , pp. 711-720.