• 沒有找到結果。

第五章、 結論與研究未來發展

第二節、 研究未來發展

由於銀杏萃取物在鼠血管平滑肌細胞增生作用上已有不錯的抑 制效果,故我們可以進一步地朝動物實驗或者是人體實驗,從複雜的 腎素-血管收縮素循環系統中觀察銀杏萃取物的反應,期待或許銀杏 萃取物能對此循環系統上的哪一關鍵點能有效用,進而改善心血管疾 病的發生情況。銀杏萃取物中含有黃酮苷類 quercetin、kaempferol、

isorhamnetin 之衍生物,而目前對於這些化合物已被廣泛地研究中,

或許吾人可先藉由高壓管柱層析來將此實驗中所用的銀杏萃取物中 各個成分分離,再來研究其每個成分對於細胞的作用為何,何者所能

抗氧化的程度最高、何者會影響 ERK 磷酸化路徑造成其他作用、何

者可能為影響細胞增生的最主要角色,以及何者可能為扮演細胞毒殺 作用的最主要角色。依此再從類似此些天然化合物的結構上改良或發 現有新的化合物能比銀杏萃取物中的成分還要有效的分子,則勢必可 以對此一疾病的治療或抗氧化的功效有更顯眼的進步。

52

參考文獻

[1] Bruandet A, Richard F, Bombois S, Maurage CA, Deramecourt V, Lebert F, et al. Alzheimer disease with cerebrovascular disease and vascular dementia: clinical features and course compared with Alzheimer disease. J Neurol Neurosurg Psychiatry 2009;80:133-139.

[2] Cechetto DF, Hachinski V, Whitehead SN. Vascular risk factors and Alzheimer's disease. Expert Rev Neurother 2008;8:743-750.

[3] Deedwania P, Srikanth S. Diabetes and vascular disease. Expert Rev Cardiovasc Ther 2008;6:127-138.

[4] Corenblum MJ, Wise VE, Georgi K, Hammock BD, Doris PA, Fornage M. Altered soluble epoxide hydrolase gene expression and function and vascular disease risk in the stroke-prone spontaneously hypertensive rat. Hypertension 2008;51:567-573.

[5] Kanda T, Nakamura E, Moritani T, Yamori Y. Arterial pulse wave velocity and risk factors for peripheral vascular disease. Eur J Appl Physiol 2000;82:1-7.

[6] Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2008;117:e25-146.

[7] Manuel DG, Leung M, Nguyen K, Tanuseputro P, Johansen H.

Burden of cardiovascular disease in Canada. Can J Cardiol 2003;19:997-1004.

[8] Tiffen R, Gittins R. How Australia compares. Cambridge: Cambridge University Press, 2004.

[9] Juel K, Sorensen J, Bronnum-Hansen H. Risk factors and public health in Denmark. Scand J Public Health 2008;36 Suppl 1:11-227.

[10] Schulte H, Cullen P, Assmann G. Obesity, mortality and cardiovascular disease in the Munster Heart Study (PROCAM).

Atherosclerosis 1999;144:199-209.

[11] Rosengren A, Wilhelmsen L. Respiratory symptoms and long-term risk of death from cardiovascular disease, cancer and other causes in Swedish men. Int J Epidemiol 1998;27:962-969.

[12] Menotti A, Giampaoli S. A single risk factor measurement predicts 35-year mortality from cardiovascular disease. G Ital Cardiol

53

1998;28:1354-1362.

[13] Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001;104:503-516.

[14] Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340:115-126.

[15] Lusis AJ. Atherosclerosis. Nature 2000;407:233-241.

[16] Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies.

Nat Med 2002;8:1249-1256.

[17] Hammoud RA, Vaccari CS, Nagamia SH, Khan BV. Regulation of the renin-angiotensin system in coronary atherosclerosis: a review of the literature. Vasc Health Risk Manag 2007;3:937-945.

[18] von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res 2006;326:599-616.

[19] Wu M, Yu H, Yang C, Bens M, Huang C, Ko Y, et al.

Cyclosporine and tacrolimus alter renin-angiotesin system in mouse medullary-thick ascending limb cultured cells. Transplant Proc 2001;33:1078-1079.

[20] Mehta PK, Griendling KK. Angiotensin II cell signaling:

physiological and pathological effects in the cardiovascular system.

Am J Physiol Cell Physiol 2007;292:C82-97.

[21] Carey RM, Wang ZQ, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function.

Hypertension 2000;35:155-163.

[22] Meffert S, Stoll M, Steckelings UM, Bottari SP, Unger T. The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 1996;122:59-67.

[23] Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T.

The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995;95:651-657.

[24] Guthrie GP, Jr. Angiotensin receptors: physiology and pharmacology. Clin Cardiol 1995;18:III 29-34.

[25] Cook VI, Grove KL, McMenamin KM, Carter MR, Harding JW, Speth RC. The AT2 angiotensin receptor subtype predominates in the 18 day gestation fetal rat brain. Brain Res 1991;560:334-336.

[26] Inagami T, Eguchi S. Angiotensin II-mediated vascular smooth

54

muscle cell growth signaling. Braz J Med Biol Res 2000;33:619-624.

[27] Hanatani A, Yoshiyama M, Kim S, Omura T, Toda I, Akioka K, et al. Inhibition by angiotensin II type 1 receptor antagonist of cardiac phenotypic modulation after myocardial infarction. J Mol Cell Cardiol 1995;27:1905-1914.

[28] Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res 1993;27:341-348.

[29] Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 1990;67:1355-1364.

[30] Ichiki T, Takeda K, Tokunou T, Funakoshi Y, Ito K, Iino N, et al.

Reactive oxygen species-mediated homologous downregulation of angiotensin II type 1 receptor mRNA by angiotensin II.

Hypertension 2001;37:535-540.

[31] Susa S, Wakabayashi I. Extracellular alkalosis activates ERK mitogen-activated protein kinase of vascular smooth muscle cells through NADPH-mediated formation of reactive oxygen species.

Febs Letters 2003;554:399-402.

[32] Cheng TH, Shih NL, Chen SY, Loh SH, Cheng PY, Tsai CS, et al.

Reactive oxygen species mediate cyclic strain-induced endothelin-1 gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in endothelial cells. J Mol Cell Cardiol 2001;33:1805-1814.

[33] Cheng CM, Hong HJ, Liu JC, Shih NL, Juan SH, Loh SH, et al.

Crucial role of extracellular signal-regulated kinase pathway in reactive oxygen species-mediated endothelin-1 gene expression induced by endothelin-1 in rat cardiac fibroblasts. Mol Pharmacol 2003;63:1002-1011.

[34] Kyaw M, Yoshizumi M, Tsuchiya K, Kirima K, Suzaki Y, Abe S, et al. Antioxidants inhibit endothelin-1 (1-31)-induced proliferation of vascular smooth muscle cells via the inhibition of mitogen-activated protein (MAP) kinase and activator protein-1 (AP-1). Biochem Pharmacol 2002;64:1521-1531.

[35] Sutcliffe AM, Clarke DL, Bradbury DA, Corbett LM, Patel JA, Knox AJ. Transcriptional regulation of monocyte chemotactic protein-1 release by endothelin-1 in human airway smooth muscle

55

cells involves NF-kappaB and AP-1. Br J Pharmacol 2009.

[36] Woods M, Mitchell JA, Wood EG, Barker S, Walcot NR, Rees GM, et al. Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: Evidence for intracellular endothelin-converting enzyme. Molecular Pharmacology 1999;55:902-909.

[37] Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 2005;38:995-1014.

[38] Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase:

role in cardiovascular biology and disease. Circ Res 2000;86:494-501.

[39] Jacobs BP, Browner WS. Ginkgo biloba: a living fossil. Am J Med 2000;108:341-342.

[40] Singh B, Kaur P, Singh GRD, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008;79:401-418.

[41] Fang J, Zhou Q, Shi XL, Jiang BH. Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells.

Carcinogenesis 2007;28:713-723.

[42] Hou L, Zhou B, Yang L, Liu ZL. Inhibition of human low density lipoprotein oxidation by flavonols and their glycosides. Chem Phys Lipids 2004;129:209-219.

[43] Wang SP, Huang KJ. Determination of flavonoids by high-performance liquid chromatography and capillary electrophoresis. J Chromatogr A 2004;1032:273-279.

[44] Lee HJ, Lee EO, Ko SG, Bae HS, Kim CH, Ahn KS, et al.

Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis. Cancer Lett 2008;270:342-353.

[45] Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A. Inhibition of Mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res 2006;66:4410-4418.

[46] Wu YZ, Li SQ, Zu XG, Du J, Wang FF. Ginkgo biloba extract improves coronary artery circulation in patients with coronary artery disease: Contribution of plasma nitric oxide and endothelin-1. Phytotherapy Research 2008;22:734-739.

[47] Altiok N, Ersoz M, Karpuz V, Koyuturk M. Ginkgo biloba extract regulates differentially the cell death induced by hydrogen

56

peroxide and simvastatin. Neurotoxicology 2006;27:158-163.

[48] Huang SY, Jeng C, Kao SC, Yu JJ, Liu DZ. Improved haemorrheological properties by Ginkgo biloba extract (Egb 761) in type 2 diabetes mellitus complicated with retinopathy. Clin Nutr 2004;23:615-621.

[49] Naik SR, Pilgaonkar VW, Panda VS. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain. Phytother Res 2006;20:1013-1016.

[50] Zeng XR, Liu M, Yang YS, Li Y, Asplund K. Ginkgo biloba for acute ischemic stroke. Stroke 2006;37:574-575.

[51] Pietri S, Seguin JR, d'Arbigny P, Drieu K, Culcasi M. Ginkgo biloba extract (EGb 761) pretreatment limits free radical-induced oxidative stress in patients undergoing coronary bypass surgery.

Cardiovasc Drugs Ther 1997;11:121-131.

[52] Christen Y, Maixent JM. What is Ginkgo biloba extract EGb 761?

An overview--from molecular biology to clinical medicine. Cell Mol Biol (Noisy-le-grand) 2002;48:601-611.

[53] Gardner CD, Zehnder JL, Rigby AJ, Nicholus JR, Farquhar JW.

Effect of Ginkgo biloba (EGb 761) and aspirin on platelet aggregation and platelet function analysis among older adults at risk of cardiovascular disease: a randomized clinical trial. Blood Coagul Fibrinolysis 2007;18:787-793.

[54] Physicians' desk reference 59 ed. Oradell, N.J.: Medical Economics Co., 2005.

[55] Russo V, Stella A, Appezzati L, Barone A, Stagni E, Roszkowska A, et al. Clinical efficacy of a Ginkgo biloba extract in the topical treatment of allergic conjunctivitis. Eur J Ophthalmol 2009;19:331-336.

[56] Napryeyenko O, Borzenko I. Ginkgo biloba special extract in dementia with neuropsychiatric features. A randomised, placebo-controlled, double-blind clinical trial.

Arzneimittelforschung 2007;57:4-11.

[57] Wang GX, Cao FL, Chen J. Progress in researches on the pharmaceutical mechanism and clinical application of Ginkgo Biloba extract on various kinds of diseases. Chin J Integr Med 2006;12:234-239.

[58] Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Clinical use and molecular mechanisms of action of extract of Ginkgo biloba leaves in cardiovascular diseases. Cardiovasc Drug Rev

57

2004;22:309-319.

[59] McKenna DJ, Jones K, Hughes K. Efficacy, safety, and use of ginkgo biloba in clinical and preclinical applications. Altern Ther Health Med 2001;7:70-86, 88-90.

[60] DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 2000;1:25-58.

[61] Soholm B. Clinical improvement of memory and other cognitive functions by Ginkgo biloba: review of relevant literature. Adv Ther 1998;15:54-65.

[62] Maurer K, Ihl R, Dierks T, Frolich L. Clinical efficacy of Ginkgo biloba special extract EGb 761 in dementia of the Alzheimer type.

J Psychiatr Res 1997;31:645-655.

[63] Schneider LS. Ginkgo biloba extract and preventing Alzheimer disease. JAMA 2008;300:2306-2308.

[64] Liu J. The use of Ginkgo biloba extract in acute ischemic stroke.

Explore (NY) 2006;2:262-263.

[65] Moulton PL, Boyko LN, Fitzpatrick JL, Petros TV. The effect of Ginkgo biloba on memory in healthy male volunteers. Physiol Behav 2001;73:659-665.

[66] Lin CC, Cheng WL, Hsu SH, Chang CM. The effects of Ginkgo biloba extracts on the memory and motor functions of rats with chronic cerebral insufficiency. Neuropsychobiology 2003;47:47-51.

[67] Kleijnen J, Knipschild P. Ginkgo biloba for cerebral insufficiency.

Br J Clin Pharmacol 1992;34:352-358.

[68] Wesnes KA, Ward T, McGinty A, Petrini O. The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers. Psychopharmacology (Berl) 2000;152:353-361.

[69] Ko CH, Shen SC, Yang LY, Lin CW, Chen YC. Gossypol reduction of tumor growth through ROS-dependent mitochondria pathway in human colorectal carcinoma cells. Int J Cancer 2007;121:1670-1679.

[70] Lee SL, Wang WW, Finlay GA, Fanburg BL. Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am J Physiol 1999;277:L282-291.

[71] Cross AR, Jones OT. The effect of the inhibitor diphenylene

58

iodonium on the superoxide-generating system of neutrophils.

Specific labelling of a component polypeptide of the oxidase.

Biochem J 1986;237:111-116.

[72] Kocic G, Djordjevic V, Vlahovic P, Kocic R, Pavlovic D, Jevtovic T. Antioxidants modulate adenosine metabolism in rat mesangial cells cultured under high glucose conditions. Ren Fail 2002;24:691-701.

[73] Sun JJ, Kim HJ, Seo HG, Lee JH, Yun-Choi HS, Chang KC. YS 49,

1-(alpha-naphtylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinol ine, regulates angiotensin II-stimulated ROS production, JNK phosphorylation and vascular smooth muscle cell proliferation via the induction of heme oxygenase-1. Life Sci 2008;82:600-607.

[74] Hong HJ, Chan P, Liu JC, Juan SH, Huang MT, Lin JG, et al.

Angiotensin II induces endothelin-1 gene expression via extracellular signal-regulated kinase pathway in rat aortic smooth muscle cells. Cardiovasc Res 2004;61:159-168.

[75] Lin FY, Chen YH, Chen YL, Wu TC, Li CY, Chen JW, et al.

Ginkgo biloba extract inhibits endotoxin-induced human aortic smooth muscle cell proliferation via suppression of toll-like receptor 4 expression and NADPH oxidase activation. J Agric Food Chem 2007;55:1977-1984.

[76] Lin SJ, Yang TH, Chen YH, Chen JW, Kwok CF, Shiao MS, et al.

Effects of Ginkgo biloba extract on the proliferation of vascular smooth muscle cells in vitro and on intimal thickening and interleukin-1beta expression after balloon injury in cholesterol-fed rabbits in vivo. J Cell Biochem 2002;85:572-582.

[77] Siegel G, Schafer P, Winkler K, Malmsten M. Ginkgo biloba (EGb 761) in arteriosclerosis prophylaxis. Wien Med Wochenschr 2007;157:288-294.

[78] Nguyen TT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H.

The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells.

Carcinogenesis 2004;25:647-659.

[79] Yogi A, Callera GE, Montezano AC, Aranha AB, Tostes RC, Schiffrin EL, et al. Endothelin-1, but not Ang II, activates MAP kinases through c-Src independent Ras-Raf dependent pathways in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol

59

2007;27:1960-1967.

[80] Nagata N, Niwa Y, Nakaya Y. A novel 31-amino-acid-length endothelin, ET-1(1-31), can act as a biologically active peptide for vascular smooth muscle cells. Biochem Biophys Res Commun 2000;275:595-600.

[81] Bouallegue A, Daou GB, Srivastava AK. Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Curr Vasc Pharmacol 2007;5:45-52.

[82] Fei J, Viedt C, Soto U, Elsing C, Jahn L, Kreuzer J. Endothelin-1 and smooth muscle cells: induction of jun amino-terminal kinase through an oxygen radical-sensitive mechanism. Arterioscler Thromb Vasc Biol 2000;20:1244-1249.

[83] Wang Z, Castresana MR, Newman WH. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun 2001;285:669-674.

[84] Engel L, Ryan U. TGF-beta 1 reverses PDGF-stimulated migration of human aortic smooth muscle cells in vitro. In Vitro Cell Dev Biol Anim 1997;33:443-451.

[85] Ma J, Wang Q, Fei T, Han JD, Chen YG. MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 2007;109:987-994.

[86] Pan D, Yang J, Lu F, Xu D, Zhou L, Shi A, et al. Platelet-derived growth factor BB modulates PCNA protein synthesis partially through the transforming growth factor beta signalling pathway in vascular smooth muscle cells. Biochem Cell Biol 2007;85:606-615.

[87] Yoshimura H, Nariai Y, Terashima M, Mitani T, Tanigawa Y.

Taurine suppresses platelet-derived growth factor (PDGF) BB-induced PDGF-beta receptor phosphorylation by protein tyrosine phosphatase-mediated dephosphorylation in vascular smooth muscle cells. Biochim Biophys Acta 2005;1745:350-360.

[88] Ebisui O, Dilley RJ, Li H, Funder JW, Liu JP. Growth factors and extracellular signal-regulated kinase in vascular smooth muscle cells of normotensive and spontaneously hypertensive rats. J Hypertens 1999;17:1535-1541.

[89] Banerjee S, Sengupta K, Dhar K, Mehta S, D'Amore PA, Dhar G, et al. Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is

60

mediated through neuropilin-1. Mol Carcinog 2006;45:871-880.

[90] Freeman MR, Paul S, Kaefer M, Ishikawa M, Adam RM, Renshaw AA, et al. Heparin-binding EGF-like growth factor in the human prostate: synthesis predominantly by interstitial and vascular smooth muscle cells and action as a carcinoma cell mitogen. J Cell Biochem 1998;68:328-338.

[91] Lu Q, Yin XX, Wang JY, Gao YY, Pan YM. Effects of Ginkgo biloba on prevention of development of experimental diabetic nephropathy in rats. Acta Pharmacol Sin 2007;28:818-828.

[92] Dias MC, Rodrigues MA, Reimberg MC, Barbisan LF. Protective effects of Ginkgo biloba against rat liver carcinogenesis. Chem Biol Interact 2008;173:32-42.

[93] Pretner E, Amri H, Li W, Brown R, Lin CS, Makariou E, et al.

Cancer-related overexpression of the peripheral-type benzodiazepine receptor and cytostatic anticancer effects of Ginkgo biloba extract (EGb 761). Anticancer Res 2006;26:9-22.

[94] Li W, Pretner E, Shen L, Drieu K, Papadopoulos V. Common gene targets of Ginkgo biloba extract (EGb 761) in human tumor cells:

relation to cell growth. Cell Mol Biol (Noisy-le-grand) 2002;48:655-662.

[95] Zhang Y, Chen AY, Li M, Chen C, Yao Q. Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res 2008;148:17-23.

[96] Feng X, Zhang L, Zhu H. Comparative Anticancer and Antioxidant Activities of Different Ingredients of Ginkgo biloba Extract (EGb 761). Planta Med 2009.

[97] Eli R. Ginkgo biloba, may significantly reduce gastrointestinal pain:

it may also reduce the risk of stomach cancer that is associated with the wide-spread use of proton pump inhibitors. Med Hypotheses 2006;66:1244.

[98] Chen JW, Chen YH, Lin FY, Chen YL, Lin SJ. Ginkgo biloba extract inhibits tumor necrosis factor-alpha-induced reactive oxygen species generation, transcription factor activation, and cell adhesion molecule expression in human aortic endothelial cells.

Arterioscler Thromb Vasc Biol 2003;23:1559-1566.

61

圖表

圖 3-1、以 Ang II 所誘發之鼠血管平滑肌細胞增生於 1、6、12、24 小時之細胞生長狀況,比例尺為200μm。

62

圖3-2、以 MTT assay 觀測 Ang II 所誘導之鼠血管平滑肌細胞增生百 分比。縱軸為對照於控制組之細胞數量百分比,橫軸為Ang II 加入後 的反應時間(h)。數值以平均值(mean)±標準誤差(standard error)來表示,

N=3。*為資料比較於控制組之 P-value < 0.05。

63

圖 3-3、以 MTT assay 觀測不同 GBE 處理後之正常鼠血管平滑肌細

胞表現量。縱軸為對照於控制組之細胞數量百分比,橫軸為 GBE 加

入的濃度(μg/ml)。數值以平均值(mean)±標準誤差(standard error)來表 示,N=3。**為資料比較於控制組之 P-value < 0.01。

64

圖3-4、在不同濃度的銀杏萃取物(GBE)處理後,以 MTT assay 測量 Ang II 誘發增生之鼠血管平滑肌細胞(VSMCs)的表現量。縱軸為對照

於控制組之細胞數量百分比,橫軸為不同濃度 GBE 以及抗氧化劑。

數值以平均值(mean)±標準誤差(standard error)來表示,N=3。***為資 料比較於控制組之P-value < 0.001,###為資料比較於只加 Ang II 但 未加 GBE 之 P-value < 0.001。

65

圖3-5、在不同銀杏萃取物的濃度下,以流式細胞儀測量 Ang II 誘發 增生之鼠血管平滑肌細胞的活性氧分子之含量。縱軸為細胞數量,橫 軸為 FITC-A。數值以平均值(mean)±標準誤差(standard error)來表示,

N=3。

66

圖3-6、在不同銀杏萃取物的濃度下 ROS 表現量之量化圖。縱軸為對 照於控制組之ROS 含量百分比,橫軸為不同濃度 GBE 以及抗氧化劑。

數值以平均值(mean)±標準誤差(standard error)來表示,N=3。****為 資料比較於控制組之P-value < 0.001,#、##、###分別為資料比較於 只加 Ang II 但未加 GBE 之 P-value < 0.05、0.01、0.001。

67

圖3-7、不同濃度之銀杏萃取物對於 ERK 磷酸化之影響。上圖為觀測

圖3-7、不同濃度之銀杏萃取物對於 ERK 磷酸化之影響。上圖為觀測

相關文件