• 沒有找到結果。

Closed-form Solution Due to a Circularly Symmetric Fluid Sink

Nomenclature

3. Closed-form Solution Due to a Circularly Symmetric Fluid Sink

Figure 2. Circularly symmetric fluid sink problem.

Figure 2 displays the circularly symmetric fluid sink model. The closed-form solutions of the horizontal displacement u r zr

 

, , vertical displacement u r zz

 

, and excess pore fluid pressure p r z

 

, due to a circularly symmetric fluid sink with radius b at a depth h are derived from equations (10a)-(10c).

附 81

Figure 3. Analysis of the circularly symmetric fluid sink problem.

Figure 3 shows a unit area dA located at a distance s from the center of circularly symmetric fluid sink. The pumping strength of this unit area is qdA , and it is approximated as a fluid point sink. The increment of displacements u ,r u and excess pore fluid pressure pz due to the elementary circularly symmetric fluid sink are obtained by substituting r s for r and qsdsdfor Q in equations (10a)-(10c). Thus, the induced total increment of displacements and excess pore fluid pressure of the aquifer are determined by the integration with radial limits of s to s b0  and circumferential limits of to0   . Using Mathematica to complete the2 symbolic calculations, the closed-form solutions are given as below:

   

 

,   ,

, 1 2 16 1

f

r z h r b z h

r r z rR r b R

G u q

k

 

 

   

 2 **,  2 **,

, ,

ln r z h ln r z h

r b z h r b z h

R R

z h z h

R R

   

    



  ,   ,

2b z h rRr z h r b Rr b z h 

    

  ,

,

2 ln z h r

z h r b

r z h R R

 

  



    **, , , ,

2 3 4 ln r z h ln z h r

z h r b r b z h

R R

h b z h r

R

R

 

 

 

      

 

 

  **, ,

, ,

2 ln r z h ln z h r

z h r b r b z h

R R

z b z h r

R R

   

 

     

 

 

* ,

*

, ,

4 ln r z h

r b z h r b z h

b R

hz R R

   

 

   , (11a)

   

 

, 1 2 8 1

f

z r z

G u q

k

 

 

 

  , , **, ,

ln r z h

r b z h r z h

r b z h

z h R R r R R

 

 

 

     

  , , **, ,

3 4 r b z h r z h ln r z h

r b z h

h z R R r R

  R

 

 

 

     

   2

,

,

2

r z h

r b z h

r r b z h hz R

z h R 

    

 

  

  

, (11b)

 , , , , ,

2

f

r z h r z h r b z h r b z h

p r z q R R R R k

   

    

* *

, ,

* *

, ,

ln r z h r b z h

r z h r b z h

R R r R R

 

 

 

, (11c)

in which Ri j,i2j2 , Ri j*,  i i2j2 , and

, , , ,

i j r r b z h z h    .

The ground surface horizontal and vertical displacements are found when z :0

   

 

2 2

2

1 2 1 1

,0 ln

2

1 1

f r

r b r r

r b u q h

Gk

 

   

   

 

2

2

ln 1 1

1 r

r b r b



   

    

, (12a)

  , 0 1 2

2

f 2 2 1

 

2 1

z r q h r r b

u Gk

 

 

    



 

2

2

ln 1

1

r b r b

r r r

    

 

  

, (12b)

where rr h and bb h. The solutions can be used to test numerical models and the detailed numerical simulations of the consolidation processes near the circularly symmetric fluid sink.

4. Numerical Results

The normalized parameter of circularly symmetric fluid sink with radius b to depth h ratio (b/h) is used to verify the proposed solutions. The profiles of vertical and horizontal displacements at the ground surface z are0 normalized by 1 2 q hf 2 2Gk as shown in Figures 4 and 5, respectively. The results shown in Figures 4 and 5 indicate that the higher normalized parameter b/h can induce larger displacements on the ground surface. The values in Figure 4 are the ground surface horizontal

附 82

displacement pointed outward from the axial symmetric center near the circularly symmetric fluid sink, and the negative value indicates that ground surface horizontal displacement is directed toward the axial symmetric center. Figures 4 and 5 also concluded that the elastic ground surface deformations due to a circularly symmetric fluid sink reached their extreme values near the edge of circularly symmetric fluid sink, i.e., r equals b.

At distance away from the sink, the displacements reduced at remote ground surface boundary.

Figure 4. Normalized horizontal displacement profile at the ground surface z = 0 due to circularly symmetric fluid sink.

Figure 5. Normalized settlement profile at the ground surface z = 0 due to circularly symmetric fluid sink.

C

Based on the fundamental solutions due to a fluid point sink, the analytical solutions of long-term horizontal displacement, vertical displacement and excess pore fluid pressure of a poroelastic half space subject to a circularly symmetric fluid sink were obtained. The closed-form solutions are derived by using Mathematica to complete the symbolic calculations. The solutions provide valuable information to test numerical models and simulations of the groundwater withdrawal processes near the circularly symmetric fluid sink. The results show:

1. The numerical results indicate that the larger normalized circularly symmetric fluid sink radius b/h can induce larger displacements of the ground surface.

2. The long-term poroelastic ground surface deformations due to a circularly symmetric fluid sink reached their extreme values near the edge of fluid sink, and the values reduced at remote ground surface boundary.

Acknowledgements

This work is supported by the National Science Council of Republic of China through grant NSC100-2221-E-216-025.

References

[1] J.F. Poland, Guidebook to studies of land subsidence due to ground-water withdrawal (Paris: Unesco, 1984).

[2] M.A. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, 12(2), 1941, 155-164.

[3] M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, Journal of Applied Physics, 26(2), 1955, 182-185.

[4] J.R. Rice & M.P. Cleary, Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents, Reviews of Geophysics and Space Physics, 14(2), 1976, 227-241.

[5] J. Bear & M.Y. Corapcioglu, Mathematical model for regional land subsidence due to pumping, 1. Integrated aquifer subsidence equations based on vertical displacement only, Water Resources Research, 17(4), 1981, 937-946.

[6] J. Bear & M.Y. Corapcioglu, Mathematical model for regional land subsidence due to pumping, 2. Integrated aquifer subsidence equations for vertical and horizontal displacements, Water Resources Research, 17(4), 1981, 947-958.

[7] J.R. Booker & J.P. Carter, Analysis of a point sink embedded in a porous elastic half space, International Journal for Numerical and Analytical Methods in Geomechanics, 10(2), 1986, 137-150.

[8] J.R. Booker & J.P. Carter, Long term subsidence due to fluid extraction from a saturated, anisotropic, elastic soil mass, The Quarterly Journal of Mechanics and Applied Mathematics, 39(1), 1986, 85-98.

onclusion 5.

附 83

[9] J.R. Booker & J.P. Carter, Elastic consolidation around a point sink embedded in a half-space with anisotropic permeability, International Journal for Numerical and Analytical Methods in Geomechanics, 11(1), 1987, 61-77.

[10] J.R. Booker & J.P. Carter, Withdrawal of a compressible pore fluid from a point sink in an isotropic elastic half space with anisotropic permeability, International Journal of Solids and Structures, 23(3), 1987, 369-385.

[11] J.-Q. Tarn & C.-C. Lu, Analysis of subsidence due to a point sink in an anisotropic porous elastic half space, International Journal for Numerical and Analytical Methods in Geomechanics, 15(8), 1991, 573-592.

[12] G.J. Chen, Analysis of pumping in multilayered and poroelastic half space, Computers and Geotechnics, 30(1), 2002, 1-26.

[13] G.J. Chen, Steady-state solutions of multilayered and cross-anisotropic poroelastic half-space due to a point sink, International Journal of Geomechanics, 5(1), 2005, 45-57.

[14] W. Kanok-Nukulchai & K.T. Chau, Point sink fundamental solutions for subsidence prediction, Journal of Engineering Mechanics, ASCE, 116(5), 1990, 1176-1182.

[15] J. C.-C. Lu & F.-T. Lin, The transient ground surface displacements due to a point sink/heat source in an elastic half-space, Geotechnical Special Publication No. 148, ASCE, 2006, 210-218.

[16] J. C.-C. Lu & F.-T. Lin, Analysis of transient ground surface displacements due to an impulsive point sink in an elastic half space, Proceedings of the IASTED International Conference on Environmental Management and Engineering, Banff, Alberta, Canada, 2009, 211-217.

[17] C.-S. Hou, J.-C. Hu, L.-C. Shen, J.-S. Wang, C.-L.

Chen, T.-C. Lai, C. Huang, Y.-R. Yang, R.-F. Chen, Y.-G.

Chen & J. Angelier, Estimation of Subsidence Using GPS Measurements, and Related Hazard: the Pingtung Plain, Southwestern Taiwan, Comptes Rendus Geoscience, 337(13), 2005, 1184-1193.

[18] A. Skempton, The pore pressure coefficients A and B, Geotechnique, 4, 1954, 143-147.

[19] E. Detournay & A. H.-D. Cheng, Poroelastic response of a borehole in a non-hydrostatic stress field, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3), 1988, 171-182.

[20] A. H.-D. Cheng & E. Detournay, A direct boundary element method for plane strain poroelasticity, International Journal for Numerical and Analytical Methods in Geomechanics, 12(5), 1988, 551-572.

[21] I.N. Sneddon, Fourier transforms (New York:

McGraw-Hill, 1951, 48-70).

Nomenclature

bi Body forces (Pa/m)

b Normalized radius of the circularly symmetric fluid sink, bb h (Dimensionless)

B Skempton’sporepressurecoefficient (Dimensionless)

dA Elementary area of the circularly symmetric fluid sink (m2)

ds Elementary distance of the distance from the center of circularly symmetric fluid sink (m) d Elementary circumferential angle (radian) G Shear modulus of the isotropic porous aquifer

(N/m2)

h Pumping depth of the sink point (m) k Permeability of the isotropic porous aquifer

(m/s)

p Excess pore water pressure (N/m2) q Rate of fluid extracted from the saturated

porous aquifer per unit volume (s) Q Pumping strength of the point sink (m3/s)

r, ,z

Cylindrical coordinates system (m, radian, m) r Normalized radial variable, rr h

(Dimensionless)

,

Ri j Distance parameter, Ri j,i2j2 (m) R1 Distance parameter, R

1

r2

 z h2 (m) R2 Distance parameter, R

2

r2

 z h2 (m)

* ,

Ri j Distance parameter, Ri j*,  i i2j2 (m)

*

R2 Distance parameter,

 

* 2

2 2

R

r

z h

 

z h (m) s Distance from the center of circularly

symmetric fluid sink (m) t Time variable (s)

ui Displacement components of the poroelastic aquifer (m)

r, z

u u Radial/axial displacement of the porous aquifer (m)

vi Specific discharge velocity components (m/s)

Biot’scoefficientofeffectivestress (Dimensionless)

附 84

f Unit weight of pore fluid (N/m3)



x

Dirac delta function (m-1)

ij Kronecker delta (Dimensionless)

Volume strain of the porous aquifer (Dimensionless)

ij Strain components of the poroelastic medium (Dimensionless)

Variation of fluid content per unit reference volume (Dimensionless)

Poisson’s ratio of the isotropic porous strata (Dimensionless)

u Undrained Poisson’s ratio of the poroelastic medium (Dimensionless)

ij Stress components of the porous strata (N/m2)

2 Differential operator,

2 2

2

2 2

1 r r

r z

  

   

 

(1/m2)

附 85

附錄 5

出席國際會議並擔任會 議主持人之心得報告

會議名稱:The 20 th IASTED International

Conference on Applied Simulation and Modelling

會議時間:2012/6/25~27 會議地點:Napoli, Italy

發表論文:如附錄 3 與附錄 4 所示

附 86

表 Y04

行政院國家科學委員會補助國內專家學者出席國際學術會議報告

2012 年 7 月 18 日

報告人姓名 呂 志 宗 服務機構

及職稱 中華大學土木工程學系副教授

時間 會議 地點

2012 年 6 月 25~27 日

義大利╱那不勒斯╱拿坡里

本會核定

補助文號 101-2914-I-216-003-A1 會議

名稱

(中文)第20 屆 IASTED 應用模擬與模式化國際學術會議

(英文)The 20th IASTED International Conference on Applied Simulation and Modelling

發表 論文 題目

(中文)1. 橫向等向性的熱彈性介質受深層水平線熱源作用之模擬

2. 圓形對稱抽水所引致的壓密沉陷模擬

(英文) 1. Modelling of a Buried Deep Horizontal Line Heat Source in a Cross-Anisotropic Thermoelastic Medium

2. Modelling of Consolidation Settlement Due to a Circularly Symmetric Fluid Sink

一、 參加會議經過

本 次 申 請 人 所 參 加 的 國 際 學 術 會 議 為 「The 20th IASTED International Conference on Applied Simulation and Modelling」,其係與「The 15th IASTED International Conference on Computers and Advanced Technology in Education」、「The 11th IASTED European Conference on Power and Energy Systems」及「The 15th IASTED International Conference on Artificial Intelligence and Soft Computing」在同一 時間暨同一地點舉辦。申請人共計發表兩篇 EI 等級的論文,並擔任分組會議之主 持人,所投稿的論文已順利完成論文簡報。

本國際學術會議是由「國際科學與技術發展協會(International Association of Science and Technology for Development)」所主辦,本會議之重點為模擬與模式化 在各個領域的應用,此次會議為第 20 次舉辦,可見其已具有甚佳的傳統、能見度 與國際化,故廣受世界各國相關領域之學者專家的高度重視。例如會議籌備委員會 的委員分別來自 21 個國家,包括:英國、日本、美國、巴西、加拿大、比利時、

法國、紐西蘭、匈牙利、希臘、印度、德國、葡萄牙、拉脫維亞、義大利、芬蘭、

波蘭、墨西哥、馬其頓、澳大地亞、羅馬尼亞等,可見此一國際會議已受到歐洲、

亞洲、美洲、澳洲等各個國家的高度重視。

大會在各個領域中,均有安排多場的專題演講,分別為:(1)義大利的 Fabio De Felice 博士之演講:「AHP and Simulation: Two winning Methodologies Combined Together」;(2)西班牙的 Javier Contreras 博士之演講:「Integration of Renewable Energies into the Iberian Electricity Market」;(3)義大利的 Enzo Bergamini 博士和 Dayana Pesando 博 士 之 演 講 :「 High-Fidelity Physical System Modeling in Maplesim」;(4) 德 國 的 Thomas Alexander 博 士 之 演 講 :「Advances Towards a Comprehensive Simulation: Combining Live, Virtual and Constructive」。相關之不同領 域的學術交流,尚有許多,對本人均有極大的幫助。

因實施夏令時間,義大利的時間比台灣晚6 個小時,世界各國的遊客絡繹不絕。

會議地點鄰近歐洲大陸唯一的活火山維蘇威火山,其海拔高度是1,281 公尺;此外,

義大利擁有許多的人類文化遺產,是歐洲文化的搖籃,故很值得親身前往體驗。本

附件三

附 87

表 Y04

次行程先從台灣飛到泰國曼谷的蘇汪納蓬國際機場,轉機後飛往羅馬的費米齊諾國 際機場,再從費米齊諾國際機場搭兩班火車前往拿坡里開會,很感謝國科會的經費 支持!

二、 與會心得

由「國際科學與技術發展協會」主辦之本次會議所發表的論文,均已納入EI、

Scopus 檢索資料庫等。本國際學術會議是在義大利的拿坡里舉辦,主辦單位希能提 供一個交流平臺,讓世界各國的研究人員及學者專家等,在模擬與模式化於各個領 域的應用上,能有彼此交流與相互學習的機會,並祈使各國能在相關領域之應用上 有長足的進步。

會議之研討主題包括五大類,如以下說明所示:

(1) Modelling and Simulation Methods:共計 15 個子題 (2) Simulation Tools and Techniques:共計 21 個子題

(3) Environmental Modelling and Simulation:共計 32 個子題 (4) Applied Simulation in the Energy Sector:共計 14 個子題 (5) Biomechanics Modelling:共計 29 個子題

會議之性質、重要性及學術地位等可用以下五點加以說明:

(1) 這個研討會的舉辦已來到第 20 年,會議主旨是提供各界模擬與模式化 (Simulation and Modelling)領域之應用、研究、分享與探索的平台,目前已逐步 形成一卓越且重要的全球性研討會。

(2) 本次會議共獲得約 30 餘個國家的專家學者投稿參與,本人有兩篇投稿論文被接 受,已於會中發表。藉由論文發表,本人確信已得到與會學者專家寶貴的建議 與評論,可藉此使研究論文更紮實,對後續投稿到SCI 等級的期刊會很有幫助。

(3) 「國際科學與技術發展協會」希望能藉先導型國際學術會議之舉辦,將各個領 域的模擬與模式化之議題納入討論,並藉由各國之相關研究成果的交流,提出 可行的方案,以供各界參考。

(4) 藉由觀摩與請益來自 30 餘國的與會學者專家之研究心得與經驗分享,參加本次 會議確實有助於提昇個人的研究能力與視野。會議論文亦已被收錄於EI、Scopus 等資料庫。

(5) 申請人之參與除有助於瞭解並掌握國際間關於相關領域的模擬與模式化之研究 現況外,亦可與世界各國之相關領域學者專家相互切磋交流,此應有利於提昇 本國相關領域在模擬與模式化等方面之應用與推廣。

三、 考察參觀活動

會議主辦單位雖未安排參觀或考察活動,但申請人有自行安排相關的參觀與考 察,主要重點為與土木和文化相關之參訪活動。

四、 建議

參與國際性之學術會議,極有助於開拓學術研究領域之視野,也可以在會議期 間,多認識一些來自世界各地的學者專家,此應有助於建立友誼,並瞭解世界各國 相關科技領域之發展現況,對以後提出國際性之學術合作應極有幫助。另外,瞭解

附 88

表 Y04

不同國家間之民俗文化,並與其有深入之對話,對增進人類各國家民族間彼此關懷 與照顧的情誼,亦有極大的幫助。建議國科會可鼓勵大專院校之教師們,多參與類 似之重要國際學術會議。

五、攜回資料名稱及內容

所攜回資料包括以下兩大類,說明如下:

(1) 攜回「第 20 屆 IASTED 應用模擬與模式化國際學術會議論文集(Proceedings of the 20th IASTED International Conference on Applied Simulation and Modelling)」,資料主要內容為會議中的各個研討主題之論文電子檔。

(2) 相關領域之其他學術會議資料的蒐集。

六、其他(用照片說明會議經過)

照片 1 會議舉辦地點拿坡里位於義大

利南部,摘自Google 地圖,http://maps.

google.com.tw/maps?hl=zh-TW&tab=wl

照片2 拿坡里的衛星地圖,摘自 Google 地 圖 ,http://maps.google.com.tw/maps?

hl=zh-TW&tab=wl

照 片 3 於 桃 園 國 際 機 場 準 備 搭 乘 TG635 班機前往曼谷的蘇汪納蓬國際機 場轉機

照片 4 於曼谷的蘇汪納蓬國際機場準

備搭乘TG944 班機前往羅馬的費米齊諾

國際機場

照片 5 於羅馬的費米齊諾國際機場準

備搭乘 Leonardo 高速火車前往羅馬的

Termini 火車站再轉搭火車前往拿坡里

照片6 於羅馬的 Termini 中央火車站準 備轉搭火車前往會議地點拿坡里

照片7 終於抵達拿坡里的中央火車站 照片8 會議地點在鄰近地中海的 Royal

Continental Hotel

照片9 會議地點的對面是 Dell’ovo 城

照片10 本人正進行第一篇的論文簡報

(6 月 25 日)

照片11 本人正進行第二篇的論文簡報

(6 月 26 日)

照片 12 來自斯洛維尼亞(Slovenia)的 Primož Potočnik 博士正進行論文簡報

附 89

表 Y04

照片 13 來自伊朗的 Mohammadsaleh Malekinejad 博士正進行論文簡報

照片14 來自日本的 Kenji Ozawa 博士 正進行論文簡報

照 片 15 來 自 法 國 的 Kalyana Chakravarthy Veluvolu 博士正進行論文 簡報

照片16 來自俄羅斯的 Ilya A. Gudkov 先生正進行論文簡報

照 片 17 來 自 哈 薩 克 (Kazakhstan) 的 Nikolay Y. Borovskiy 博士正進行論文簡

照片18 來自韓國的 Hongrae Kim 博士 正進行論文簡報

照片19 來自希臘的 Foteini Grivokostopoulou 博士生正進行論文簡

照片20 來自義大利的 Fabio De Felice 博士正進行專題演講

照片21 來自加拿大的 Adif 先生正進行 論文簡報

照片22 來自瑞典的 Asif Rahman 博士 生正進行論文簡報

照片23 來自日本的 Nobuyuki Ohmori 博士生正進行論文簡報

照片24 來自義大利的 Enzo Bergamini 博士正進行專題演講

照片25 來自義大利的 Dayana Pesando 博士正進行專題演講

照 片 26 本 人 與 來 自 西 班 牙 的 Jose Gonzalez Monteagudo 博士合影

照片27 拿坡里的 Nuovo 城堡

附 90