• 沒有找到結果。

Chapter 5 Model Verification by Circuit Simulation

5.3 Four port MOSFETs under various bias conditions

For four port devices, three kinds of operate bias condition to consider: 1.off state device (Vgs=Vds=0V); 2. Strong inversion in liner region (Vg=1.2V, Vds=0V); 3. Strong inversion in saturation region (Vg=1.2V, Vds=1.2V).

5.3.1 4T MOSFETs in linear region

The equivalent circuit of four-port devices after open de-embedding at Vg=V

primary simulation and fine tune the parasitic inductance according to the imaginary part of Y parameters along the frequency, gate resistance according to the Re(Y11) at high frequency, substrate resistance according to the Im(Y24), Im(Y34) with the RC

d=Vs=Vb=0V was plotted in Fig. 4.7. Using the extracted model parameters for

decay behavior, in this condition, to maintain the charge conservation in body terminal, it should be add a parameter Cbb in body terminal, and use a parameter Rbb connect with Cbb to control the RC decay behaviors in Im(Y44), and Cbb can be calculated from the equation (5.1).The modified equivalent circuit are plotted in Fig. 5.4 and Fig.

5.5, the substrate networks compose with a lumped RC equivalent circuit in a multi-finger device, to simplify substrate networks, substrate resistance represent as a total distributed effect resistance, and Cbb represent as the nearest capacitance between substrate and DNW, when the impedance of Cbb smaller than the Rbulk with operate frequency increasing, the body signal can coupling to DNW by the Cbb

D with a resistance. The S and Y parameters comparison of simulation and measurement after optimization are plotted in Fig.

s under Vg=Vd=0V are list

directly and connection to GN

5.6~Fig. 5.13. And the model parameters optimized for four-port device ed in Table 5.4.

(

dut dut dut dut

)

bb

+

dnw

Im

44

-

41

-

42

-

43

/

C CY Y Y Y ω

(5.1)

Table 5.4 The optimized parameters for four-port device at Vgs= Vds=0V NF Lg(pH) Ls(pH) Ld(pH) Lb(pH) RG RS RD RB Rs_diff Rd_diff

18 79.65 73.59 79.59 76.90 8.11 0.73 0.73 0.73 8.66 9.63

NF C s(fF) Cgd fF) gb(fF) Cjs(fF) Cjd(fF) Rbulk Cdnw(fF) Cbb(fF) Rbb 6 11.06 11.06 2.84 26.19 16.09 352.13 24.04 39.25 93.60 18 27.47 28.08 10.55 60.17 50.34 272.51 27.76 61.02 103.12

6 69.65 69.54 66.59 65.12 16.61 0.73 0.73 0.73 20.11 26.82

36 81.64 79.59 81.59 79.11 5.02 0.71 0.73 0.73 4.17 4.40

g ( C

36 55.15 56.62 21.05 110.10 98.40 185.70 66.10 75.46 113.78

According to the equivalent circuit of four-port device after open de-embedding at Vg>>Vth, Vd=Vs=Vb=0V and the additional substrate parameters Cbb, Rbb, the model parameters optimized for four-port devices under Vg=1.2V, Vd=0V are listed in Table 5.5.

One thing mentioned that the substrate networks component is ignorable in two-port 3T devices in this supplied bias condition, because channel resistance is smaller than the impedance of substrate network from drain to source. For four-port devices, owing to body terminal connected to

terminal, substrate resistance will affect the behavior in body terminal directly, it is essential element to model the substrate network. Looking at the parameters that YGG, YGD, YDG, and YDD can be express the two-port CS configuration MOSFET characteristic under this bias condition, it is always unchanged with the varying Rbulk

and the result is expectable.

Table 5.5 The optimized parameters for four-port device at Vgs=1.2V, Vds=0V signal pad and separate from source

NF Lg(pH) Ls(pH) Ld(pH) Lb(pH) RG RS RD RB Rs_diff Rd_diff 6 69.65 69.54 66.59 65.12 16.61 0.73 0.73 0.73 20.11 26.82 18 79.65 73.59 79.59 76.90 8.66 0.73 0.73 0.73 8.66 9.63 36 81.64 79.59 81.59 79.11 5.24 0.71 0.73 0.73 4.17 4.40

NF Rch Cgs(fF) Cgd(fF) Cgb(fF) Cjs(fF) Cjd(fF) Rbulk Cdnw(fF) Cbb(fF) Rbb 6 16.16 19.10 17.21 0.10 28.21 16.19 352.13 24.04 39.25 93.60 18 5.66 60.60 50.18 0.01 69.61 54.77 272.51 27.76 61.02 103.12 36 2.85 129.11 85.76 0.02 118.40 108.50 185.70 66.10 75.46 113.78

5.3.2 4T MOSFETs in saturation region

The equivalent circuit of four-port device after open de-embedding at Vg=Vds=1.2V, Vs=Vb=0V was plotted in Fig. 4.20, it must be add a current gain gmb

parameters between drain and source to fit the Im(Y24) and Im(Y34), the current gain gmb can be extracted from the Re(Ydb).The modified equivalent circuit is plotted in Fig.

imulation and measurement after optimization are plotted in Fig. 5.15~Fig. 5.18. And the model parameters optimized for four-port devices under Vgs=Vds=1.2V are listed in Table 5.6.

5.14, the S and Y parameters comparison of s

Table 5.6 The optimized parameters for four-port device at Vgs=Vds=1.2V

NF Lg(pH) Ls(pH) Ld(pH) Lb(pH) RG RS RD RB Rs_diff

6 69.65 69.54 66.59 65.12 16.36 0.73 0.73 0.73 20.11

18 79.65 73.59 79.59 76.90 8.50 0.73 0.73 0.73 8.66

NF Cgs(fF) Cgd(fF) Cgb(fF) Cjs(fF) C (fF) Rbulk Cdnw(fF) Cbb(fF)

6 21.66 11.24 0.80 28.29 10.47 352.13 24.04 39.25

18 64.84 29.52 2.61 69.61 32.68 272.51 27.76 61.02 10

36

6 1630.00 5.92 302.00 19.50 1.90 3.96

18 323.38 8.30 185.43 51.62 5.59 14.10

36 215.14 29.22 31.77 86.12 10.72 28.60

Rd_diff 26.82

9.63

36 81.64 79.59 81.59 79.11 5.28 0.71 0.73 0.73 4.17 4.40

jd Rbb

93.60 3.12 127.00 65.49 5.02 118.40 69.32 185.70 66.10 75.46 113.78

NF Rds Cds Rch Gm(ms) Gds(ms) Gmb(ms)

0 5 10 15 20 25 30 35 40

Freq (GHz) Line:simulation

0 5 10 15 20 25 30 35 40

Vd=0V ; Vg=0V L/W =0.13/4

Symbol:measurement 0

20

Freq (GHz)

0.6

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

L/W =0.13/4

Freq (GHz)

0 5 10 15 20 25 30 35 40 -0.20

11)Im(Y22)Im(Y

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

NF=6 NF=18 NF=36 NF=72

Re(Y22)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40 L/W =0.13/4

NF=6 NF=18 NF=36 NF=72

Re(Y12)

Freq (GHz) Symbol:measurement

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz)

Fig. 5.1 The comparison of 3T devices at Vgs=Vds=0V and L=0.13um

0 5 10 15 20 25 30 35 40

L/W /NF=0.13/4/18

Mag(S11)

Freq (GHz)

Vd=0V ; Vg=0.4~1V

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40

L/W /NF=0.13/4/18

Re(Y11)

Freq (GHz)

Vd=0V ; Vg=0.4~1V

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

0.02 0.03 0.040.05 0.06 0.07 0.080.09 0.10 0.11 0.120.13 0.14 0.15 0.16 0.17

Re(Y22)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz) Vg=0.4V

L/W /NF=0.13/4/18

Re(Y12)

Freq (GHz)

Vd=0V ; Vg=0.4~1V

Im(Y21)Im(Y12) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

Fig. 5.2 The comparison of 3T devices at Vgs>>Vth, Vds=0V and L=0.13um

0 5 10 15 20 25 30 35 40

1.05 L/W /NF=0.18/4/18

Mag(S11)

Freq (GHz)

Vd=1V ; Vg=0.4~1V

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

-150 -100 -50 0

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

L/W /NF=0.13/4/18 Vd=1V ; Vg=0.4~1V

Symbol:measurement

Re(Y11)

Freq (GHz) Line:simulation

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

0.00 0.01 0.02

Freq (GHz) Vg=0.4V

L/W /NF=0.13/4/18

Re(Y12)

Freq (GHz)

Vd=1V ; Vg=0.4~1V

Im(Y21)Im(Y12) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-0.11

Freq (GHz)

Fig. 5.3 The comparison of 3T devices at Vgs>>Vth, Vds=1V and L =0.13um

Fig. 5.4 The modified equivalent circuit of 4-port device at Vgs=Vds=0V

Fig. 5.5 The modified equivalent circuit of 4-port device at Vgs=1.2V, Vds=0V

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SGG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Mag(SGB)Mag(SGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SGD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SSG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

0.250.30 0.350.40 0.450.50 0.550.60 0.650.70 0.750.80 0.850.90 0.95 1.001.05

NF=6 NF=18 NF=36

Mag(SSB)Mag(SSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SSD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SDG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Mag(SDB) Mag(SDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

0.25 0.30 0.350.40 0.45 0.500.55 0.600.65 0.70 0.750.80 0.850.90 0.951.00 1.05

NF=6 NF=18 NF=36

Mag(SDD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SBG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Mag(SBB)Mag(SBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SBD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

The measured and simulated Mag(S) of 4-port devices at Vgs=Vds=

Fig. 5.6 0V

0 5 10 15 20 25 30 35 40

-180-170 -160-150 -140-130 -120-110 -100-90-80-70-60-50-40-30-20-10100

L/W =0.13/4

Phase(SGG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Phase(SGB)Phase(SGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SGD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Phase(SSG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

-180-170 -160-150 -140-130 -120-110 -100-90

Phase(SSB)Phase(SSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SSD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Phase(SDG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Phase(SDB)Phase(SDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SDD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Phase(SBG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Phase(SBB)Phase(SBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SBD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-100

Freq (GHz)

The measured and simulated Phase(S) of 4-port devices at Vgs=Vds=0V Fig. 5.7

L/W =0.13/4

Re(YGG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Re(YGB)Re(YGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Re(YSG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Re(YSB)Re(YSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz) Symbol:measurement

Re(YDB)Re(YDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-0.003

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-0.002

Freq (GHz)

Fig. 5.8 The measured and simulated Re(Y) of 4-port devices at Vgs=Vds=0V

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Im(YGG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Im(YGB)Im(YGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Im(YSG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Im(YSB)Im(YSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-0.002

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz) Symbol:measurement

Im(YDB)Im(YDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Im(YBG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Im(YBB)Im(YBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

The measured and simulated Im(Y) of 4-port devices at Vgs=Vds=0V Fig. 5.9

L/W =0.13/4

Mag(SGG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Mag(SGB)Mag(SGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SGD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SSG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Mag(SSB)Mag(SSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SSD)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz) Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SDG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Mag(SDB)Mag(SDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SDD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SBG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Mag(SBB)Mag(SBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SBD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

Fig. 5.10 The measured and simulated Mag(S) of 4-port devices at Vgs=1.2V, Vds=0V

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Phase(SGG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Phase(SGB)Phase(SGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SGD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-150

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Phase(SSG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Phase(SSB)Phase(SSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SSD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

Phase(SDG)

Freq (GHz) Line:simulation

Phase(SDB)Phase(SDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SDD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Phase(SBG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Phase(SBB)Phase(SBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SBD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

The measured and simulated Phase(S) of 4-port devices at Vgs=1.2V

Fig. 5.11 , Vds=0V

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Re(YGG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Re(YGB)Re(YGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Re(YSG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Re(YSB)Re(YSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz) Symbol:measurement

Re(YDB)Re(YDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45 0.000.02

0.040.06 0.080.10 0.120.14 0.160.18 0.200.22 0.240.26 0.280.30 0.320.34 0.360.38

NF=6 NF=18 NF=36

Re(YDD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Re(YBG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

The measured and simulated Re(Y) of 4-port devices at Vgs=1.2V

Fig. 5.12 , Vds=0V

L/W =0.13/4

Im(YGG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Im(YGB)Im(YGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Im(YSG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Im(YSB)Im(YSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Im(YDG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Im(YDB)Im(YDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-0.002

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Im(YBG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Im(YBB)Im(YBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-0.010

Freq (GHz)

The measured and simulated Im(Y) of 4-port devices at Vgs=1.2V

Fig. 5.13 ,Vds=0V

Fig. 5.14 The modified equivalent circuit of 4-port device at Vgs=1.2V, Vds=1.2V

0 5 10 15 20 25 30 35 40

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

L/W =0.13/4

Mag(SBG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Symbol:measurement Line:simulation

NF=6 NF=18 NF=36

0 5 10 15 20 25 30 35 40

0.00 0.05 0.10 0.15

NF=6 NF=18 NF=36

Mag(SBB)Mag(SBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

0.00 0.05 0.10

NF=6 NF=18 NF=36

Mag(SBD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 NF=6 NF=18 NF=36

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SSG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Mag(SSB)Mag(SSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SSD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

0.040.06 0.080.10 0.120.14 0.160.18 0.200.22 0.240.26 0.280.30 0.320.34 0.360.38 NF=6

NF=18 NF=36

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Mag(SDG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Mag(SDB)Mag(SDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SDD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

0.06 0.080.10 0.120.14 0.160.18 0.200.22 0.24 0.26 0.280.30 0.320.34 0.360.38 NF=6

NF=18 NF=36

Freq (GHz)

0 5 10 15 20 25 30 35 40

Mag(SBG)

Freq (GHz) Line:simulation

Mag(SBB)Mag(SBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Mag(SBD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

Fig. 5.15 The measured and simulated Mag(S) of 4-port devices at Vgs=Vds=1.2V

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Phase(SGG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Phase(SGB)Phase(SGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SGD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

Phase(SSG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Phase(SSB)Phase(SSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SSD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45-80

Freq (GHz)

0 5 10 15 20 25 30 35 40 100110 120130 140150 160170 180190

L/W =0.13/4

Phase(SDG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Phase(SDB)Phase(SDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SDD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40 -50

0 50 100

L/W =0.13/4

Phase(SBG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Phase(SBB)Phase(SBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Phase(SBD)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

The measured and simulated Phase(S) of 4-port devices at Vgs=Vds=1.2V Fig. 5.16

L/W =0.13/4

Re(YGG)

Freq (GHz)

Vd=0V ; Vg=0V ; Vs=0V ; Vb=0V

Re(YGB)Re(YGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Re(YSG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V 0.000.01 0.020.03 0.040.05 0.060.07 0.080.09 0.100.11 0.120.13 0.140.15 NF=6

NF=18 NF=36

Re(YSB)Re(YSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Re(YDG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Re(YDB)Re(YDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Re(YBG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

The measured and simulated Re(Y) of 4-port devices at Vgs=Vds=

Fig. 5.17 1.2V

L/W =0.13/4

Im(YGG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

0 5 10 15 20 25 30 35 40 -0.040-0.035-0.030-0.025-0.020-0.015-0.010-0.0050.0000.0050.0100.0150.0200.0250.0300.0350.0400.0450.0500.055 NF=6

NF=18 NF=36

Im(YGB)Im(YGS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45 -0.0050.0000.0050.010 0.015

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Im(YSG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Im(YSB)Im(YSS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

Freq (GHz) Symbol:measurement

Im(YDB)Im(YDS) Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

0 5 10 15 20 25 30 35 40

L/W =0.13/4

Im(YBG)

Freq (GHz)

Vd=0V ; Vg=1.2V ; Vs=0V ; Vb=0V

Im(YBB)Im(YBS)

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

-5 0 5 10 15 20 25 30 35 40 45

Freq (GHz)

The measured and simulated Im(Y) of 4-port devices at Vgs=Vds=

Fig. 5.18 1.2V

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Base on the small signal equivalent circuit and model parameter extraction method are proposed previously in our laboratory, to develop the equivalent circuit and extraction method relevant to the test structures under various biases further, both two-port 3T and four-port 4T RF MOSFETs are covered in this work.

An extensive verification has been performed on the proposed small signal equivalent circuit models through simulation under various biases. The model parameters manifest a good scalability over gate lengths and gate finger numbers under a specified finger width. The accuracy over frequencies and biases and scalability over device geometries is useful to improve accuracy of high frequency circuit simulation.

6.2 Future Work

6.2.1 Parasitic resistance extraction

According to the equivalent circuit of short pad, the extracted resistance should be frequency independent, the extracted results show that the common part of resistance is almost const with the frequency, but the terminal resistance is not. To develop the parasitic resistance and inductance extraction method and the suitable dummy structure to de-embed in the future.

6.2.2 Substrate resistance extraction

Substrate resistance is a significant parameter for the MOSFET modeling, the

substrate network parameters extraction discussed in many researches, and it is a challenging issue for the accuracy extraction and modeling until now, it is mentioned that the substrate resistance effect the Im(Y24) and Im(Y34) with the frequency, in this study, substrate resistance extracted from the reduced 2x2 matrix, according to the equivalent circuit of four-port MOSFET, it is a feasible way to extract substrate resistance directly on four-port MOSFET in theory, even when the MOSFET operate at saturation region.

6.2.3 Small signal equivalent circuit with body biases

The equivalent circuit established in three kinds of different operate region, the simulation result is approximately match with measurement when Vds=0V, but the equivalent circuit operate at saturation region, the output impedance have to improve the extraction method and modified the equivalent circuit to make the accurate simulation behaviors.

According to four-port devices, introduction of the equivalent circuit establishment and the extraction method when Vbs=0V. it is necessary to develop the equivalent circuit when operate with body biases in the feature, it have to include the asymmetry channel phenomenon, transcapacitances, transconductance (gm, gds, gmb), the complicated substrate networks and others physical mechanism parameters in the completed MOSFET small signal equivalent circuit modeling.

Bibliography

[1] G ave Transistor Amplifiers Analysis and Design, 2nd ed., sey, 1996.

[2]

[4]

, Vol. 151, No. 6, Dec. 2004.

[6] . T. Reydezel and M. A. Roberto, “Straightforward Determination of Small-Signal for Bulk RF-MOSFETs,” IEEE International Caracas

, Nov.3-5,

[8] H. Chen, W. Liu, M. J. Deen, P.R. Gray and C. Hu, “An Effective Gate Resistance Model for CMOS RF and Noise Modeling,”

. Gonzalez, Microw Prentice Hall, New Jer

W. Liu, X. Jin, J. Chen et al., BSIM3v3.2 MOSFET Model- User’s Manual, Univ.

California Press, Berkeley, CA, 1997-1998

[3] Christian C. Enz, and Yuhua Cheng, “MOS Transistor Modeling for RF IC Design”, IEEE Transactions on Solid-State Circuit, vol. 35, no. 2, Feb. 2000.

Ickjin Kwon, Minkyu Je, Kwyro Lee, and Hyungcheol Shin, “A Simple and Analytical Parameter-Extraction Method of a Microwave MOSFET”, IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 6, Jun. 2002.

[5] A.F. Tong, K.S. Yeo, L. Jia, C.Q. Geng, J.-G. Ma and M.A. Do, “Simple and accurate extraction methodology for RF MOSFET valid up to 20 GHz”, IEE Proc.-Circuits Devices Syst.

T

Model Parameters

Conference on Devices, Circuits and Systems, Dominican Republic

2004.

[7] Y.S. Chi, J. X. Lu, S.Y. Zhang, Z. J. Wu, and F. Y. Huang, “An Analytical

Parameter Extraction of the Small-Signal Model for RF MOSFETs,” IEEE International Conference on Electron Devices and Solid-State Circuits,

pp.555-558, 2005.

X. Jin, J. J. Ou, C.

International Electron Device Meeting(IEDM 98), pp. 961-964, Dec. 1998.

[9] Y. Cheng, and M. Matloubian, “High frequency Characterization of Gate Resistance in RF MOSFETs.,” IEEE Electron Device Letters, vol. 22, no. 2, Feb.

2001.

[10] R. Torres-Torres, R.S. Murphy-Arteaga, and S. Decoutere, “MOSFET gate resistance determination”, ELECTRONICS LETTERS 23rd January 2003 Vol. 39 No. 2

[11] H. W. Lin, S. S. Chung, S. C. Wong, and G. W. Huang, “An Accurate RF CMOS ate Resistance Model Compatible with HSPICE,” Proc. ICMTS '04. The

27-230,

and H. Shin, “Extraction and Modeling of Physics-Based

. 2006.

[15] David R. Pehlke, Michael Schroter, and

Bing J. Sheu, “Accurate Modeling and Parameter Extraction for MOS Transistors Valid up to 10 GHz”, IEEE Trans. Electron Devices, vol. 46, no. 11, Nov. 1999.

[16] Y. Cheng and M. Matloubian, “On the High-Frequency Characteristics of Substrate Resistance in RF MOSFETs,” IEEE Electron Device Letters, vol. 21, no.12, pp. 604-606, Dec. 2000.

G

International Conference on Microelectronic Test Structures, vol. 17, pp. 2

Mar. 2004.

[12] M. Kang, I. M. Kang, and H. Shin, “Extraction and modeling of gate electrode

resistance in rf MOSFETs,” IEEE International Conference on Integrated Circuit and Technology, 2005.

[13] M. Kang, I. M. Kang,

Gate Resistance Components In RF MOSFETs,” Silicon Monolithic Integrated Circuits in RF Systems (SiRF 2006), Digest of Papers, 2006.

[14] Emmanuel Torres-Rios, Reydezel Torres-Torres, Gregorio Valdovinos-Fierro, and Edmundo A. Gutiérrez-D., “A Method to Determine the Gate Bias-Dependent and Gate Bias-Independent Components of MOSFET Series Resistance From S-Parameters,” IEEE Electron Device Letters, vol. 53, no. 3, Mar

Steve Hung-Min Jen, Christian C. Enz,

[17] Y. Cheng, and M. Matloub n of accurate and scaleable substrate resistance components in RF MOSFETs,” IEEE Electron Device Letters,

Method to Extract the Substrate Resistance

ms

, vol. 23, no.

s

Tseng, Tsun-Lai Hsu, ian, “Parameter extractio

vol. 23, no. 4, pp. 221–223, Apr. 2002.

[18] S. Kim, J. Han, and H. Shin, “A Direct

Components of RF MOSFETs Valid up to 50 GHz”, 2004 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Syste

[19] J. Han, M. Je, and H. Shin, “A Simple and Accurate Method for Extracting Substrate Resistance of RF MOSFETs”, IEEE Electron Device Letters

7, Jul. 2002.

[20] Shih-Dao Wu, Guo-Wei Huang, Kun-Ming Chen, Chun-Yen Chang, Hua-Chou Tseng, and Tsun-Lai Hsu, “Extraction of substrate parameters for RF MOSFET Based on Four-Port Measurement,” IEEE Microwave And Wireless Components Letters, vol. 15, NO. 6, June 2005.

[21] Shih-Dao Wu, Guo-Wei Huang, Kun-Ming Chen, Hua-Chou

and Chun-Yen Chang, “RF MOSFET Characterization by Four-Port Measurement,” IEICE Trans. Electron., Vol. E88-C, NO. 5, May 2005.