• 沒有找到結果。

CHAPTER 5 Conclusions and Recommendations for Future Works

5.2 Recommendations for Future Works

1. More HRTEM images to evidence thickness variation and interfacial layer reaction.

2. More physical analysis to understand the properties of the ozone oxide.

3. Fully fabricated MOSFET with high-κ dielectrics and various surface treatment to study the device characteristics.

References

[1] R. H. Dennard, “Field–Effect Transistor Memory,” U.S. Patent 3,387,286 (1968)

[2] E. Adler, J. K. DeBrosse, S. F. Geissler, S. J. Holmes, M. D. Jaffe, J. B. Johnson, C. W.

Koburger III, J. B. Lasky, B. Lloyd, G. L. Miles, J. S. Nakos, W. P. Noble, Jr., S. H.

Voldman, M. Armacost, and R. Ferguson, “The evolution of IBM CMOS DRAM technology,” IBM J. Res. & Dev., vol. 39, p. 167 (1995)

[3] International Technology Roadmap for Semiconductor, Semiconductor Industry Association (2004)

[4] Y. C. Yeo, T. J. King, and C. Hu, “Direct tunneling leakage current and scalability of alternative gate dielectrics,” Appl. Phys. Lett., vol. 81, no. 11, p. 2091 (2002)

[5] D. A. Buchanan, E. P. Gusev, E. Cartier, H. Okorn Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N. Bojarczuk, A. Callegari, C. D’Emic, P.

Kozlowski, K. Chan, R. J. Fleming, P. C. Jamison, J. Brown, and R. Amdt, “80nm poly–silicon gated n–FETs with ultra–thin Al2O3 gate dielectric for ULSI applications,”

IEDM Tech. Dig., p. 223 (2000)

[6] S. J. Ding, H. Hu, C. Zhu, M. F. Li, S. J. Kim, B. J. Cho, D. S. H. Chan, M. B. Yu, A. T.

Du, A. Chin, and D. L. Kwong, “Evidence and understanding of ALD HfO2–Al2O3

laminate MIM capacitors outperforming sandwich counterparts,” IEEE Electron Device Lett., vol. 24, no. 10, p. 681 (2004)

[7] J. C. Wang, S. H. Chiao, C. L. Lee, T. F. Lei, Y. M. Lin, M. F. Wang, S. C. Chen, C. H.

Yu, and M. S. Liang, “A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film,” J. Appl. Phys., vol. 92, no. 7, p. 3936 (2002)

[8] B. Tavel, X. Garros, T. Skotnicki, F. Martin, C. Leroux, D. Bensahel, M. N. Séméria, Y.

Morand, J. F. Damlencourt, S. Descombes, F. Leverd, Y. Le Friec, P. Leduc, M. Rivoire, S. Jullian, and R. Pantel, “High performance 40nm nMOSFETs with HfO2 gate dielectric and polysilicon damascene gate,” IEDM Tech. Dig., p. 429 (2002)

[9] H. Sunami, T. Kure, N. Hashimoto, K. Itoh, T. Toyabe, and S. Asai, “A corrugated capacitor cell (CCC) for megabit dynamic MOS memories,” IEDM Tech. Dig., p. 806 (1982)

[10] H. Kang, K. Kim, Y. Shin, I. Park, K. Ko, C. Kim, K. Oh, S. Kim, C. Hong, K. Kwon, J.

Yoo, Y. Kim, C. Lee, W. Paick, D. Suh, C. Park, S. Lee, S. Ahn, C. Hwang, and M. Lee,

“Highly manufacturable process technology for reliable 256Mbit and 1Gbit DRAMs,”

IEDM Tech. Dig., p. 635 (1994)

[11] G. Bronner, H. Aochi, M. Gall, J. Gambino, S. Gernhardt, E. Hammerl, H. Ho, J. Iba, H.

Ishiuchi, M. Jaso, R. Kleinhenz, T. Mii, M. Narita, L. Nesbit, W. Neumueller, A.

Nitayama, T. Ohiwa, S. Parke, J. Ryan, T. Sato, H. Takato, and S. Yoshikawa, “A fully planarized 0.25µm CMOS technology for 256Mbit DRAM and beyond,” VLSI Tech.

Symp. Dig., p. 15 (1995)

[12] M. T. Bohr, “Technology development strategies for the 21st century,” Appl. Surf. Sci., vol. 100–101, p. 534 (1996)

[13] Y. Taur, D. Buchanan, W. Chen, D. J. Frank, K. I. Ismail, S. H. Lo, G. A. Sai Halasz, R.

G. Viswanathan, H. J. C. Wann, S. J. Wind, and H. S. Wong, “CMOS scaling into the nanometer regime,” Proc. IEEE, vol. 85, no. 4, p. 486 (1997)

[14] K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, no. 11, p. 2757 (1996)

[15] M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo–hafnium compounds,” Thin Solid Films, vol.

41, p. 247 (1977)

[16] T. Aoyama, S. Saida, Y. Okayama, M. Fujisaki, K. Imai, and T. Arkado, “Leakage current mechanism of amorphous and crystalline Ta2O5 films grown by chemical vapor deposition,” J. Electrichem. Soc., vol. 143, no.3, p. 977 (1996)

[17] E. Atanassova, A. Paskaleva, N. Novkovski, and M. Georgieva, “Conduction mechanisms and reliability of thermal Ta2O5–Si structures and the effect of the gate electrode,” J. Appl. Phys., vol. 97, 094104 (2005)

[18] C. Isobe, and M. Saitoh, “Effect of ozone annealing on the dielectric properties of tantalum oxide thin films grown by chemical vapor deposition,” Appl. Phys. Lett., vol.

56, no. 10, p. 907 (1990)

[19] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” IEDM Tech. Dig., p. 133 (1999)

[20] S. J. Lee, H. F. Luan, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts, and D. L. Kwong,

“Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly–Si gate electrodes,” VLSI Tech. Symp. Dig., p. 133 (2001)

[21] H. Y. Yu, J. F. Kang, J. D. Chen, C. Ren, Y. T. Hou, S. J. Whang, M. F. Li, D. S. H.

Chan, K. L. Bera, C. H. Tung, A. Du, and D. L. Kwong, “Thermally robust high quality

HfN/HfO2 gate stack for advanced CMOS devices,” IEDM Tech. Dig., p. 99 (2003) [22] S. B. Samavedam, L. B. La, J. Smith, S. Dakshina Murthy, E. Luckowski, J. Schaeffer,

M. Zavala, R. Martin, V. Dhandapani, D. Triyoso, H. H. Tseng, P. J. Tobin, D. C.

Gilmer, C. Hobbs, W. J. Taylor, J. M. Grant, R. I. Hegde, J. Mogab, C. Thomas, P.

Abramowitz, M. Moosa, J. Conner, J. Jiang, V. Arunachalam, M. Sadd, Y. Nguyen, and B. White, “Dual–metal gate CMOS with HfO2 gate dielectric,” IEDM Tech. Dig., p. 433 (2002)

[23] C. H. Wang, R. D. Lin, S. F. Chen, and W. K. Lin, “Effects of O2 rapid thermal annealing on the microstuctural properties and reliablilty of RF–sputtered Ta2O5 films,”

IEEE Trans. on Dielectrics and Electrical Insulation, vol. 7, no. 3, p. 316 (2000)

[24] A. Paskaleva, E. Atanassova, and T. Dimitrova, “Leakage currents and conduction mechanisms of Ta2O5 layers on Si obtained by RF sputtering,” Vacuum, vol. 58, p. 470 (2000)

[25] J. Y. Kim, M. C. Nielsen, E. J. Rymaszewski, and T. M. Lu, “Electrical Characteristics of thin Ta2O5 films deposited by reactive pulsed direct–current magnetron sputtering,” J.

Appl. Phys., vol. 83, no. 3, p. 1448 (2000)

[26] S. Seki, T. Unagami, and O. Kogure, “Effects of suface oxide on leaksge current of magnetron sputtered Ta2O5 on Si,” J. Electrichem. Soc., vol. 132, no. 12, p. 3054 (1985) [27] K. S. Park, D. Y. Lee, K. J. Kim, and D. W. Moon, “Growth and characterization of

Ta2O5 thin films on Si by ion beam,” Thin Solid Films, vol. 281, p. 419 (1996)

[28] S. Boughaba, M. Islam, J. P. McCaffrey, G. I. Sproule, and M. J. Graham, “Ultrathin Ta2O5 films produced by large–area pulsed laser deposition,” Thin Solid Films, vol. 371, p. 119 (2000)

[29] H. Ono, and K. I. Koyanagi, “Infrared absorption peak dou to Ta–O bonds in Ta2O5 thin films,” Appl. Phys. Lett., vol. 77, no. 10, p. 1431 (2000)

[30] H. Shinriki, M. Sugiura, and K. Shimomure, “Ethanol–addition–enhanced, chemical vapor deposited tantalum oxide films from Ta(OC2H5)5 and oxygen precursors,” J.

Electrichem. Soc., vol. 145, no. 9, p. 3247 (1998)

[31] I. W. Boyd, and J. Y. Zhang, “Low temperature photoformation of tantalum oxide,”

Microelectronics Reliability, vol. 40, p. 649 (2000)

[32] G. Guiu, and P. Grange, “Synthesis and characterization of Ta2O5–SiO2 mixed oxides,”

Bull. Chem. Soc. Jpn., vol. 67, no. 10, p. 2716 (1994)

[33] S. Duenas, H. Castan, J. Barbolla, R. R. Kola, and P. A. Sullivan, “Electrical

characteristics of anode tantalum pentoxide thin films under thermal stress,”

Microelectronics Reliability, vol. 40, p. 659 (2000)

[34] H. Shinriki, and M. Nakata, “UV-O and dry-O : Two-step-annealed chemical vapor-deposited Ta O films for storage dielectrics of 64-Mb DRAMs,”

3 2

2 5 IEEE Trans.

Electron Devices, vol. 38, p. 455(1991)

[35] S. R. Jeon, S. W. Han, and J. W. Park, “Effect of rapid thermal annealing treatment on electrical properties and microstructure of tantalum oxide thin film deposited by plasma-enhanced chemical vapor deposition,” J. Appl. Phys., vol. 77, p. 5978 (1995) [36] Prakash A. Murawala, Mikio Sawai, Toshiaki Tatsuta, Osamu Tsuji, Shizuo Fujita, and

Shigeo Fujita, “Structural and electrical properties of Ta2O5 grown by the plasma-enhanced siquid Source CVD using penta ethoxy tantalum source,” Jpn. J. Appl.

Phys., vol. 32, p. 368 (1993)

[37] FAaSTTM 230 Operations, SDI (1998)

[38] Marshall Wilson, Jacek Lagowski, Lubek Jastrzebski, Alexandre Savtchouk, and Vladimir Faifer, “COCOS (corona oxide characterization of semiconductor) non-contact metrology for gate dielectrics,” NIST Conference on Characterization and Metrology for ULSI Technology (2000)

[39] Y. Ohji, Y. Matsui, T. Ttoga, M. Hirayama, Y. Sugawara, K. Torii, H. Miki, M. Nakata, I. Asano, S. Iijima, and Y. Kawamoto, “Ta O capacitors' dielectric material for giga-bit DRAMs,”

2 5

IEDM Tech. Dig., p. 111 (1995)

[40] H. Shinriki, M. Hiratami, A. Nakano, and S. Tachi, 23rd Conf. Solid State Devices and Materials, p. 198 (1991)

[41] Laegu Kang, Katsunori, and Jack C. Lee, “MOSFET devices with polysilicon on single-layer HfO2 high-κ dielectrics,” IEDM Tech. Dig., p. 35 (2000)

[42] C. Hobbs, H. Tseng, and P. Tobin, “80 nm Poly-Si gate CMOS with HfO2 gate dielectric,” IEDM Tech. Dig., p. 651 (2001)

[43] C.H. Lee, Y.H. Kim, and D.L. Kwong, “MOS devices with high quality ultra thin CVD ZrO2 gate dielectrics and self-aligned TaN and TaN/Poly-Si gate electrodes,” VLSI Tech.

Symp. Dig., p. 137 (2001)

[44] G.D. Wilk, R.M. Wallace, and J.M. Anthony, “High-κ gate dielectrics: current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, p. 5243 (2001) [45] A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt, and T. Zabel, “Physical

and electrical characterization of hafnium oxide and hafnium silicate sputtered films,” J.

Appl. Phys., vol. 90, no. 12, p. 6466 (2001)

[46] E. P. Guseri, D. A. Buchanani, and E. Cartier, “Ultra thin high-κ gate stacks for advanced CMOS devices,” IEDM Tech. Dig., p.451 (2001)

[47] D. Buchanan, “80 nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications,” IEDM Tech. Dig., p. 223 (2000)

[48] K. Nakamura, A. Kurokawa, and S. Ichimura, “Hydrofluoric acid etching of ultra thin silicon oxide film fabricated by high purity ozone,” Thin Solid Films, vol. 343/344, p.

361 (1999)

[49] T. Nishiguchi, H. Nonaka, and S. Ichimura,High-quality SiO2 film formation by highly concentrated ozone gas at below 600°C,” Appl. Phys. Lett., vol. 81, p. 2190 (2002) [50] K. Nakamura, S. Ichimura, A. Kurokawa, K. Koike, G. Inoue, and T. Fukuda,

“Ultrathin silicon oxide film on Si(100) fabricated by highly concentrated ozone at atmospheric pressure,” J. Vac. Sci. Technol. A, vol. 17, p. 1275 (1999)

[51] Hyo Sik Chang, Sangmoo Choi, Dae Won Moon, and Hyunsang Hwang, “Improved Reliability Characteristics of Ultrathin SiO2 Grown by Low Temperature Ozone Oxidation,” Jpn. J. Appl. Phys., vol. 41, no. 10, p. 5971 (2002)

[52] Katsunori Onishi, Chang Seok Kang, Rino Choi, Hag-Ju Cho, Sundar Gopalan, Renee E.

Nieh, Siddharth A. Krishnan, and Jack C. Lee, “Improvement of surface carrier mobility of HfO2 MOSFETs by high-temperature forming gas annealing,” IEEE Trans. Electron Devices, vol. 50, p. 384 (2003)

[53] I. Kingon, J. P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, vol. 406, p. 1032 (2000)

[54] E. Atanassova, and T. Dimitrova, in Handbook of Surfaces and Interfaces of Materials, edited by H. S. Nalwa, vol. 4, p. 439 (2001)

[55] MRS Bull. 27 (2002)

[56] E. H. Nicolian, and J. R. Brews, “MOS Physics and Technology,” (Wiley, New York) (1982)

[57] J. Maserjian, and N. Zamani, “Observation of positively charged state generation near the Si/SiO2 interface during Fowler-Nordheim tunneling,” J. Vac. Sci. Technol., vol.

20, no. 3, p. 743 (1982)

[58] T. N. Nguyen, P. Olivo, and B. Ricco, “A new failure mode of very thin (<50w) thermal SiO2 films,” Proceedings of the International Reliability Physics Symposium, p. 66

(1987)

[59] R. Moazzami, and C. Hu, “Stress-induced current in thin silicon dioxide films,” IEDM Tech. Dig., p.139 (1992)

[60] D. J. DiMaria, and E. Cartier, “Mechanism for stress-induced leakage currents in thin silicon dioxide films,” J. Appl. Phys., vol. 78, no. 6, p. 3883 (1995)

[61] J. H. Stathis, and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” IEDM Tech. Dig., p. 167 (1998)

[62] Paul E. Nicollian, Mark Rodder, Douglas T. Grider, Peijun Chen, Robert M. Wallace, and Sunil V. Hattangady, “Low voltage stress-induced-leakage-current in ultrathin gate oxides,” IEEE 37th Annual International Reliability Physics Symposium, p. 400 (1999) [63] W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, “Charge trapping in ultrathin hafnium

oxide,” IEEE Electron Device Lett., vol. 23, no. 10, p. 597 (2002)

[64] 李 聰 杰 , “Electrical characteristics of pMOSFETs HfO2/SiON gate stacks after post-N2O plasma nitridation ,” 交通大學碩士論文 (2005)

Vita

姓 名 : 張祐慈 性 別 : 女

出生日期 : 民國 68 年 10 月 19 日 籍 貫 : 台灣省苗栗縣

住 址 : 苗栗縣苗栗市北苗里蕉嶺街 17 巷 12 號 2F 學 歷 :

中原大學電子工程學系學士 (88.9–92.6) 國立交通大學電子工程研究所碩士 (92.9–94.6)

論文題目 :

高介電常數介電層在金氧半元件及動態隨機存取記憶體上之特性研究 Investigation of High-κ Dielectrics on MOS Devices and DRAM

發表論文 :

Shih-Chang Chen, Yung-Yu Chen, Yu-Tzu Chang, “Effects of Surface Treatments on the HfO2

Gate Dielectric Characteristics,” The 12th Symposium on Nano Device Technology (SNDT 2005), NDL, May 4-5, Hsinchu, Taiwan, ROC, 2005