• 沒有找到結果。

內皮素受體拮抗劑:抗高血壓化合物及其與受體作用之研究-(子計畫一)─抗高血壓藥物合成之研究

N/A
N/A
Protected

Academic year: 2021

Share "內皮素受體拮抗劑:抗高血壓化合物及其與受體作用之研究-(子計畫一)─抗高血壓藥物合成之研究"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

1

行政院國家科學委員會專題研究計畫成果報告

八十七年度抗高血壓藥物合成之研究

The Synthesis of Potential Anti-Hyper tensive Dr ugs

計畫編號:NSC 87-2113-M-002-023

執行期限:86 年 8 月 1 日至 87 年 7 月 31 日

主持人:蔡蘊明 國立臺灣大學化學系

一、中文摘要 我們已發展了一條可行的路徑,合成 ET-1 受體拮抗劑 SB209670 的構型固定類似 物,此法最主要是利用一個分子內的 Stille 偶合反應,將 SB209670 兩邊的苯環以一個 乙烯架橋相連。 關鍵詞:受體、拮抗劑、Stillle 偶合、SB209670 Abstr act

A conformationally rigid analog of SB209670 (1), a potent endothelin receptor antagonist, was prepared featuring a key step involving Stille coupling.

Keywor ds: SB209670, Stille coupling, receptor antagonist 二、緣由與目的

Endothelin-1 (ET-1), a 21 amino acid peptide, isolated from endothelial cells exhibits profound endogenous vasoconstriction and mitogenic activities.1 Intensive efforts were put

on the search for the endothelin receptor antagonists.2 Recently, based partly on the

molecular modeling of ET-1, SmithKline Beecham Pharmaceuticals reported the finding of (1 S,2R,3S)-3-[2-(carboxymethoxy)-4-methoxyphenyl]-1-[3,4-(methylenedioxy)phenyl]-5-(prop-1-yloxy)indan-2-carboxylic acid (1; SB 209670) as a highly potent antagonist,3

selective for the endothelin receptors. The SB researchers used the 1- and 3-aryl groups to mimic the aromatic side chains of Tyr-13, Phe-14 of ET-1. Electron-donating substituents on these two phenyl moieties were designed to have better binding affinity with the receptors. The 2-carboxylic group was considered to function as the Asp-18 of ET-1. The carboxylic acid side chain on the 3-aryl group was designed to mimic the C-terminal carboxyl of the peptide. The propyloxy group was introduced only for the convenience of the synthesis. Removal of this group basically had no effect on the biological activities.

(2)

2 Scheme 1 O OMe PrO CO2H O O O OMe PrO CO2Me O O Br 2 1 SnBu3 O OMe PrO COOH O O COOH SB209670 3

Based on the SB findings, we wish to synthesize acid 2 as the conformationally rigid analog of 1 in order to understand more about the role of the 1- and 3-aryl groups in 1. Retrosynthetically, we planned to employ a Stille coupling4 of stannane 3 to construct a

methyleneoxy bridge connecting the two flanking aromatic rings on the indane skeleton.

三、 研究報告內容

Our synthesis of the cyclic ether 2 was realized as shown in Scheme 2. The preparation of ester 10 followed the same strategy as reported by Elliott et al. The Knoevenagel

coupling of β-ketoester 43 with the known bromoaldehyde 55 gave enone 6 in 80% yield as a

mixture of E/Z-isomers. Cyclization of enone 6 in TFA gave the β-ketoester 7 (97%) as a mixture of cis- and trans-isomers which was oxidized with DDQ to give indenone 8 (58%). Coupling of 8 with the Grignard reagent 9 prepared from the corresponding bromide3,6 gave

the alcohol 10. Interestingly, alcohol 10 exists as a separable 3:1 mixture of two conformers presumably due to the hindered rotation of the bromo containing 3-aryl group. The

relationship of the two isomers was confirmed by heating the minor isomer of 10 in benzene at 80 oC for 2 h to give back a mixture of the two conformers.

Attempted catalytic hydrogenation (H2, Pd/C, EtOAc/EtOH) of alcohol 10 was not successful

even at 80 oC. The sluggishness of this reaction was probably due to the steric hindrance

imposed by the 2-bromo-4,5-methylenedioxyphenyl group. Without the bromo group in alcohol 10, the catalytic hydrogenation can be accomplished at room temperature.3 To solve

this problem, we switched to the use of triethylsilane in TFA at 60 oC. Under this condition

we were able to isolate the cis-lactone 11 in 40% yield. The MOM protecting group was removed during the initial 5 min period of the reaction. Treatment of the lactone 11 with potassium carbonate in methanol at room temperature gave the ester 13 in 68% yield. That the ester 13 is the all cis-isomer was confirmed by NOE experiments. Irradiation of H(2) resulted in 8% and 8% enhancement of the 1H NMR signals of H(1) and H(3), respectively.

(3)

3

lactone 12 was treated with one equivalent of sodium methoxide in methanol under refluxing temperature, the lactone ring opening was accompanied with epimerization at C(2) to give the all trans-isomer in 70% yield. While the 1H NMR signals of H(2) in ester 13 and lactone 11

appeared at δ 4.1, the corresponding signal in ester 12 appeared at δ 3.2. This chemical shift difference also indicated the difference of stereochemistry at C(2) between esters 12 and 13.

Scheme 2 PrO OMe O O O O CHO Br PrO OMe O O Br O O PrO CO2Me O O O Br PrO CO2Me O O O Br OCH3 OMOM MgBr OMOM OMe PrO CO2Me O O Br OH 2 O OMe PrO O O 1 3 i O

Reagents and conditions : (a) AcOH (cat), piperidine (cat), PhH, 80 oC, 6 h; 80%. (b) TFA, rt, 12 h; 97%. (c) DDQ, dioxane, 70 oC, 2.5 h; 58%. (d) THF, 0 oC > rt, 5 h; 70%. (e) Et3SiH, TFA, 60 oC, 24 h; 40%. (f) NaOMe, MeOH, reflux, 5 h; 70%. (g) ICH

2SnBu3, K2CO3, DMF, 70 oC; 75%.

(h) Pd(PPh3)4, AsPh3, Toluene, 100 oC; 80%. (i)NaOH, dioxane, H2O , rt, 12 h; 85%. (j) K2CO3,

MeOH, rt; 68%. Br 14 + 7 OH OMe PrO O O 6 c b 5 Br 4 11 OH OMe PrO O O e 8 10 Br d CO2Me CO2Me a 9 f j 12 13 3 2 g h O OMe PrO CO2Me O O

(4)

4

Alkylation of ester 12 with tributyl(iodomethyl)stannane7 in DMF gave the ether 3 in 75% yield. Stille coupling7 with palladium tetrakis(triphenylphosphine) in the presence of triphenylarsine8 afforded the cyclized ether 14 in 80% yield.9 Finally, the saponification of cyclic ether 14 was accomplished with sodium hydroxide in wet dioxane to afford the acid 2 (85%).

四、 參考文獻

1. Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. Nature 1988, 332, 411–415.

2. (a) Arai, H.; Hori, S.; Aramori, I.; Ohkubo, H.; Nakanishi, S. Nature 1990, 348, 730– 732. (b) Sakurai, T.; Yanagisawa, M.; Takuwa, Y.; Miyazaki, H.; Kimura, S.; Goto, K.; Masaki, T. Nature 1990, 348, 732–735. (c) Cheng, X.-M.; Nikam, S. S.; Doherty, A. M. Current Med. Chem. 1994, 1, 271–312. (d) Doherty, A. M. Drug Develop. Today

1996, 1, 60–70.

3. Elliott, J. D.; Lago, M. A.; Cousins, R. D.; Gao, A.; Leber, J. D.; Erhard, K. F.; Nambi, P.; Elshourbagy, N. A.; Kumar, C.; Lee, J. A.; Bean, J. W.; DeBrosse, C. W.; Eggleston, D. S.; Brooks, D. P.; Feuerstein, G.; Ruffolo, Jr., R. R. ; Weinstock, J.; Gleason, J. G.; Peishoff, C. E.; Ohlstein, E. H. J. Med. Chem. 1994, 37, 1553–1557.

4. For review about Stille coupling, see: Mitchell, T. N. Synthesis 1992, 803–815.

5. (a) Fleming, I.; Noolias, M. J. Chem. Soc. Perkin Trans. I 1979, 829–837. (b) Mervic, M.; Ben-David, Y.; Ghera, E. Tetrahedron Lett. 1981, 22, 5091–5094.

6. de Paulis, T.; Kumar, Y.; Johansson, L.; Ramsby, S.; Florvall, L.; Hall, H.; Angeby-Moller, K.; Ogren, S.-O. J. Med. Chem. 1985, 28, 1263–1269.

7. Seitz, D. E.; Carroll, J. J. ; Clandia, P. C.; Cartaya M., C. P. ; Lee, S.-H.; Zapata, A. Synth. Commun. 1983, 13, 129–134.

8. (a) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W. Tetrahedron Lett.

1992, 33, 919–922. (b) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 5905–5911.

9. For related coupling involving a-alkoxystannanes, see: (a) Ye, J.; Bhatt, R. K.; Falck, J. R. J. Am. Chem. Soc. 1994, 116, 1–5. (b) Cardenas, D. J.; Mateo, C.; Echavarren, A. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 2445–2447. (c) Mateo, C.; Cardenas, D. J.; Fernandez-Rivas, C.; Echavarren, A. M. Chem. Eur. J. 1996, 2, 1596–1606.

參考文獻

相關文件

包括具有藥理活性的高分子和低分子藥物高分子化或

為降低藥品安全性與有效性試驗的成本與其耗費的時間, 合併第一期

使金屬離子均勻分散在纖維中而具有抗菌作用。抗菌

答:有關,根據實驗三,三種卡榫依脫落程度由小排到大,分別為方榫(四面)<三

(1)針對具有中子研究專長者,具備下列要件之 一:①物理、化學、核工系所博士畢業,具 二年以上中子研究經驗;執行中子散射、繞

二、高壓氣體用途甚廣,各事業單位大多使用以作為生產製程之消耗性原、物

2.醫療院所體檢表(體檢項目:身高、體重、視力、血壓及胸部

IRB 編號 CE19168A-2 計畫主持人 林敬恒 計畫名稱 推動輸血與非類固醇抗發炎藥物不良反應之智慧醫療應用 審查意見