• 沒有找到結果。

Section 11.6 The Ratio and Root Tests

N/A
N/A
Protected

Academic year: 2022

Share "Section 11.6 The Ratio and Root Tests"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 11.6 The Ratio and Root Tests

34. Use any test to determine whether the series is absolutely convergent, conditionally convergent, or divergent.

X

n=2

(−1)n

√n ln n [Hint: ln x <√ x.]

Solution:

SECTION 11.6 THE RATIO AND ROOT TESTS ¤ 1101 so the series 

=2

(−1)ln 

 converges by the Alternating Series Test. To determine absolute convergence, note that



(−1)ln 



 = ln 

  1

 for  ≥ 3, so 

=2



(−1)ln 



 is divergent by direct comparison with

=2

1

, which is divergent.

Hence, 

=2

(−1)ln 

 is conditionally convergent.

28. lim

→∞

|| = lim→∞



 1 −  2 + 3

 = lim→∞

 − 1

3 + 2 = lim

→∞

1 − 1

3 + 2 = 1

3  1, so the series

=1

 1 −  2 + 3

is absolutely convergent by the Root Test.

29. lim

→∞



+1



 = lim→∞



 (−9)+1

( + 1)10+2 · 10+1 (−9)



 = lim→∞



 (−9)

10( + 1)



 = 9 10 lim

→∞

1

1 + 1 = 9

10(1) = 9

10  1, so the series

=1

(−9)

10+1 is absolutely convergent by the Ratio Test.

30. lim

→∞



+1



 = lim→∞



( + 1)52+2

10+2 ·10+1

52



 = lim→∞

52( + 1)

10 = 5

2 lim

→∞

 1 + 1

= 5

2(1) = 5

2  1, so the series

=1

52

10+1 diverges by the Ratio Test. Or: Since lim

→∞= ∞, the series diverges by the Test for Divergence.

31. lim

→∞

|| = lim→∞

  ln 

 = lim→∞

ln  = lim

→∞

 ln 

= limH

→∞

1

1 = lim

→∞  = ∞, so the series

=2

  ln 

diverges by the Root Test.

32.



sin(6) 1 + √



 ≤ 1 1 + √

  1

32, so the series

=1

sin(6) 1 + √

 converges by direct comparison with the convergent ­series

=1

1

32 ( =32  1). It follows that the given series is absolutely convergent.

33.



(−1)arctan 

2



  2

2 , so since 

=1

2

2 =  2

=1

1

2 converges ( = 2  1), the given series 

=1

(−1)arctan 

2 converges absolutely by the Direct Comparison Test.

34.

=2

= 

=2

(−1)

√ ln  = 

=2(−1). Now = 1

√ ln   0for  ≥ 2, {} is decreasing for  ≥ 2, and lim

→∞= 0, so the series

=2

(−1)

√ ln converges by the Alternating Series Test. Also, observe that



√(−1)

 ln 



 = 1

√ ln   1

√√

 = 1

 for  ≥ 2, so the series

=2



 (−1)

√ ln 



 is divergent by direct comparison with

=2

1

, which is a divergent (partial) ­series [ = 1 ≤ 1]. Thus,

=2

(−1)

√ ln  is conditionally convergent.

35. By the recursive definition, lim

→∞



+1



 = lim→∞



5 + 1 4 + 3



 = 5

4  1, so the series diverges by the Ratio Test.

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

36. A seriesP an is defined by the equations

a1= 1 an+1= 2 + cos n

√n an

Determine whetherP an converges or diverges.

Solution:

152 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

34. lim

→∞



+1



 = lim→∞



( + 1)52+2

10+2 · 10+1

52



 = lim→∞

52( + 1)

10 = 5

2 lim

→∞

 1 + 1

= 5

2(1) = 5

2  1, so the series

=1

52

10+1 diverges by the Ratio Test. Or: Since lim

→∞= ∞, the series diverges by the Test for Divergence.

35. lim

→∞

|| = lim→∞    ln 

 = lim→∞

ln  = lim

→∞

 ln 

= limH

→∞

1

1 = lim

→∞ = ∞, so the series

=2

  ln 

diverges by the Root Test.

36.



sin(6) 1 + √



 ≤ 1 1 + √

  1

32, so the series

=1

sin(6) 1 + √

 converges by comparison with the convergent -series

=1

1

32 ( = 32  1). It follows that the given series is absolutely convergent.

37. Since 0 ≤ 1

3 ≤ 

3 = 

 1

3

 and 

=1

1

3 is a convergent -series [ = 3  1], 

=1

1

3 converges, and so

=1

(−1)1

3 is absolutely convergent.

38. The function () = 1

 ln  is continuous, positive, and decreasing on [2 ∞).

2

1

 ln  = lim

→∞

2

1

 ln  = lim

→∞[ln(ln )]2= lim

→∞[(ln(ln ) − ln(ln 2)] = ∞, so the series

=2

(−1)

 ln  diverges by the Integral Test. Now {} =

 1

 ln 

with  ≥ 2 is a decreasing sequence of positive terms and lim

→∞= 0. Thus,

=2

(−1)

 ln  converges by the Alternating Series Test. It follows that

=2

(−1)

 ln  is conditionally convergent.

39. By the recursive definition, lim

→∞



+1



 = lim→∞



5 + 1 4 + 3



 = 5

4  1, so the series diverges by the Ratio Test.

40. By the recursive definition, lim

→∞



+1



 = lim→∞



2 + cos 

√



 = 0  1, so the series converges absolutely by the Ratio Test.

41. The series 

=1

cos 

 = 

=1(−1)

, where  0for  ≥ 1 and lim

→∞ = 1 2.

lim→∞



+1



 = lim→∞



(−1)+1+1

 + 1 · 

(−1)



 = lim→∞

 + 1 = 1

2(1) = 1

2  1, so the series 

=1

cos 

 is

absolutely convergent by the Ratio Test.

42. lim

→∞



+1



 = lim→∞



 (−1)+1( + 1)!

( + 1)+112· · · +1 ·12· · ·  (−1)!



 = lim→∞



(−1)( + 1)

+1( + 1)+1



 = lim→∞

+1( + 1)

= lim

→∞

1

+1

 

 + 1

= lim

→∞

1

+1

 1

1 + 1

= lim

→∞

1

+1(1 + 1) = 1

1 2 = 2

  1 so the series 

=1

(−1)!

123· · ·  is absolutely convergent by the Ratio Test.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

39. For which of the following series is the Ratio Test inconclusive (that is, it fails to give a definite answer)?

(a)

P

n=1 1 n3 (b)

P

n=1 n 2n (c)

P

n=1 (−3)n−1

n (d)

P

n=1

n 1+n2

Solution: SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS ¤ 153 43. (a) lim

→∞



1( + 1)3 13



 = lim→∞

3

( + 1)3 = lim

→∞

1

(1 + 1)3 = 1. Inconclusive (b) lim

→∞



( + 1) 2+1 · 2



 = lim→∞

 + 1 2 = lim

→∞

1 2+ 1

2

= 1

2. Conclusive (convergent) (c) lim

→∞



√(−3)

 + 1 ·

√ (−3)−1



 = 3 lim→∞

 

 + 1 = 3 lim

→∞

 1

1 + 1 = 3. Conclusive (divergent)

(d) lim

→∞





√ + 1

1 + ( + 1)2 · 1 + 2

√



 = lim→∞



1 + 1

· 12+ 1 12+ (1 + 1)2

= 1. Inconclusive

44. We use the Ratio Test:

lim→∞



+1



 = lim→∞



[( + 1)!]2/[( + 1)]!

(!)2/()!



 = lim→∞



 ( + 1)2

[( + 1)] [( + 1) − 1] · · · [ + 1]





Now if  = 1, then this is equal to lim

→∞



( + 1)2 ( + 1)



 = ∞, so the series diverges; if  = 2, the limit is

lim→∞



 ( + 1)2 (2 + 2)(2 + 1)



 = 1

4  1, so the series converges, and if   2, then the highest power of  in the denominator is larger than 2, and so the limit is 0, indicating convergence. So the series converges for  ≥ 2.

45. (a) lim

→∞



+1



 = lim→∞



 +1 ( + 1)! · !



 = lim→∞



 

 + 1



 = || lim→∞

1

 + 1 = || · 0 = 0  1, so by the Ratio Test the series 

=0

! converges for all .

(b) Since the series of part (a) always converges, we must have lim

→∞

! = 0by Theorem 11.2.6.

46. (a) = +1+ +2+ +3+ +4+ · · · = +1

1 + +2

+1

++3

+1

++4

+1 + · · ·

= +1

1 ++2

+1

++3

+2

+2

+1

+ +4

+3

+3

+2

+2

+1 + · · ·

= +1(1 + +1+ +2+1+ +3+2+1+ · · · ) ()

≤ +1

1 + +1+ +12 + +13 + · · ·

[since {} is decreasing] = +1

1 − +1

(b) Note that since {} is increasing and →  as  → ∞, we have  for all . So, starting with equation (),

= +1(1 + +1+ +2+1+ +3+2+1+ · · · ) ≤ +1

1 +  + 2+ 3+ · · ·

= +1

1 − . 47. (a) 5=

5

=1

1

2 = 1 2 +1

8+ 1 24 + 1

64 + 1

160 = 661

960 ≈ 068854. Now the ratios

= +1

= 2

( + 1)2+1 = 

2( + 1)form an increasing sequence, since

+1− =  + 1

2( + 2)− 

2( + 1) = ( + 1)2− ( + 2)

2( + 1)( + 2) = 1

2( + 1)( + 2)  0. So by Exercise 46(b), the error in using 5is 5≤ 6

1 − lim

→∞

= 1 6 · 26 1 − 12 = 1

192 ≈ 000521.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

41. (a) Show that

P

n=0 xn

n! converges for all x.

(b) Deduce that lim

n→∞

xn

n! = 0 for all x.

Solution:

SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS ¤ 153 43. (a) lim

→∞



1( + 1)3 13



 = lim→∞

3

( + 1)3 = lim

→∞

1

(1 + 1)3 = 1. Inconclusive (b) lim

→∞



( + 1) 2+1 ·2



 = lim→∞

 + 1 2 = lim

→∞

1 2+ 1

2

= 1

2. Conclusive (convergent) (c) lim

→∞



√(−3)

 + 1 ·

√ (−3)−1



 = 3 lim→∞

 

 + 1 = 3 lim

→∞

 1

1 + 1 = 3. Conclusive (divergent)

(d) lim

→∞





√ + 1

1 + ( + 1)2 ·1 + 2

√



 = lim→∞



1 + 1

 · 12+ 1 12+ (1 + 1)2

= 1. Inconclusive

44. We use the Ratio Test:

lim→∞



+1



 = lim→∞



[( + 1)!]2/[( + 1)]!

(!)2/()!



 = lim→∞



 ( + 1)2

[( + 1)] [( + 1) − 1] · · · [ + 1]





Now if  = 1, then this is equal to lim

→∞



( + 1)2 ( + 1)



 = ∞, so the series diverges; if  = 2, the limit is

lim→∞



 ( + 1)2 (2 + 2)(2 + 1)



 = 1

4  1, so the series converges, and if   2, then the highest power of  in the denominator is larger than 2, and so the limit is 0, indicating convergence. So the series converges for  ≥ 2.

45. (a) lim

→∞



+1



 = lim→∞



 +1 ( + 1)!· !



 = lim→∞



 

 + 1



 = || lim→∞

1

 + 1 = || · 0 = 0  1, so by the Ratio Test the series 

=0

! converges for all .

(b) Since the series of part (a) always converges, we must have lim

→∞

! = 0by Theorem 11.2.6.

46. (a)  = +1+ +2+ +3+ +4+ · · · = +1

1 ++2

+1

+ +3

+1

++4

+1 + · · ·

= +1

1 ++2

+1

++3

+2

+2

+1

++4

+3

+3

+2

+2

+1 + · · ·

= +1(1 + +1+ +2+1+ +3+2+1+ · · · ) ()

≤ +1

1 + +1+ 2+1+ 3+1+ · · ·

[since {} is decreasing] = +1

1 − +1

(b) Note that since {} is increasing and →  as  → ∞, we have  for all . So, starting with equation (),

= +1(1 + +1+ +2+1+ +3+2+1+ · · · ) ≤ +1

1 +  + 2+ 3+ · · ·

= +1

1 − . 47. (a) 5 =

5

=1

1

2 = 1 2+ 1

8+ 1 24 + 1

64 + 1

160 = 661

960 ≈ 068854. Now the ratios

= +1

= 2

( + 1)2+1 = 

2( + 1) form an increasing sequence, since

+1− =  + 1

2( + 2)− 

2( + 1) = ( + 1)2− ( + 2)

2( + 1)( + 2) = 1

2( + 1)( + 2)  0. So by Exercise 46(b), the error in using 5is 5≤ 6

1 − lim

→∞

= 1 6 · 26 1 − 12 = 1

192 ≈ 000521.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

42. Let P an be a series with positive terms and let rn= an+1/an. Suppose that lim

n→∞rn= L < 1, so P an converges by the Ratio Test. As usual, we let Rn be the remainder after n terms, that is,

Rn = an+1+ an+2+ an+3+ · · ·

(a) If {rn} is a decreasing sequence and rn+1< 1, show, by summing a geometric series, that Rn ≤ an+1

1 − rn+1

(b) If {rn} is an increasing sequence, show that

Rn ≤ an+1

1 − L Solution:

SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS ¤ 153 43. (a) lim

→∞



1( + 1)3 13



 = lim→∞

3

( + 1)3 = lim

→∞

1

(1 + 1)3 = 1. Inconclusive (b) lim

→∞



( + 1) 2+1 ·2



 = lim→∞

 + 1 2 = lim

→∞

1 2+ 1

2

= 1

2. Conclusive (convergent) (c) lim

→∞



√(−3)

 + 1 ·

√ (−3)−1



 = 3 lim→∞

 

 + 1 = 3 lim

→∞

 1

1 + 1 = 3. Conclusive (divergent)

(d) lim

→∞





√ + 1

1 + ( + 1)2 ·1 + 2

√



 = lim→∞



1 + 1

 · 12+ 1 12+ (1 + 1)2

= 1. Inconclusive

44. We use the Ratio Test:

lim→∞



+1



 = lim→∞



[( + 1)!]2/[( + 1)]!

(!)2/()!



 = lim→∞



 ( + 1)2

[( + 1)] [( + 1) − 1] · · · [ + 1]





Now if  = 1, then this is equal to lim

→∞



( + 1)2 ( + 1)



 = ∞, so the series diverges; if  = 2, the limit is

lim→∞



 ( + 1)2 (2 + 2)(2 + 1)



 = 1

4  1, so the series converges, and if   2, then the highest power of  in the denominator is larger than 2, and so the limit is 0, indicating convergence. So the series converges for  ≥ 2.

45. (a) lim

→∞



+1



 = lim→∞



 +1 ( + 1)!· !



 = lim→∞



 

 + 1



 = || lim→∞

1

 + 1 = || · 0 = 0  1, so by the Ratio Test the series 

=0

! converges for all .

(b) Since the series of part (a) always converges, we must have lim

→∞

! = 0by Theorem 11.2.6.

46. (a)  = +1+ +2+ +3+ +4+ · · · = +1

1 ++2

+1

+ +3

+1

++4

+1 + · · ·

= +1

1 ++2

+1

++3

+2

+2

+1

++4

+3

+3

+2

+2

+1 + · · ·

= +1(1 + +1+ +2+1+ +3+2+1+ · · · ) ()

≤ +1

1 + +1+ 2+1+ 3+1+ · · ·

[since {} is decreasing] = +1

1 − +1

(b) Note that since {} is increasing and →  as  → ∞, we have  for all . So, starting with equation (),

= +1(1 + +1+ +2+1+ +3+2+1+ · · · ) ≤ +1

1 +  + 2+ 3+ · · ·

= +1

1 − . 47. (a) 5 =

5

=1

1

2 = 1 2+ 1

8+ 1 24 + 1

64 + 1

160 = 661

960 ≈ 068854. Now the ratios

= +1

= 2

( + 1)2+1 = 

2( + 1) form an increasing sequence, since

+1− =  + 1

2( + 2)− 

2( + 1) = ( + 1)2− ( + 2)

2( + 1)( + 2) = 1

2( + 1)( + 2)  0. So by Exercise 46(b), the error in using 5is 5≤ 6

1 − lim

→∞

= 1 6 · 26 1 − 12 = 1

192 ≈ 000521.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Evaluate the surface

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part..  is periodic with