• 沒有找到結果。

Full-CMOS 2.4GHz LNA and VCO for ISM Band Wireless Communication 陳厚銘、王木俊

N/A
N/A
Protected

Academic year: 2022

Share "Full-CMOS 2.4GHz LNA and VCO for ISM Band Wireless Communication 陳厚銘、王木俊"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Full-CMOS 2.4GHz LNA and VCO for ISM Band Wireless Communication 陳厚銘、王木俊

E-mail: 9223666@mail.dyu.edu.tw

ABSTRACT

In this thesis, we present a low noise amplifier and a voltage-controlled oscillator with 2.5V supply voltage for the ISM (Industrial Scientific and Medical) band heterodyne receiver. Here, the performances of the low noise amplifier and the voltage-controlled oscillator are simulated by the Advanced Design System (ADS) software with the 0.25μm CMOS process parameters. The operating frequency of the low noise amplifier is located at 2.4GHz. Because the low noise amplifier is at the first stage of a receiver, the noise figure and the gain of this amplifier circuit will dominate the performance of the noise figure of the whole receiver. Thus, the designing goals of a low noise amplifier must own high voltage gain and low noise. This low noise amplifier is principally composed of a cascode amplifier and a common-source amplifier. Design simulation results show the high gain of 21.083dB, low noise figure of 2.74dB and good impedance match. We adopted the LC tank architecture to design the voltage-controlled oscillator.

With a 2.5V supply, the tuning frequency is from 2.156GHz to 2.377GHz with 9.8% tuning range. The phase noise is

—120.3dBc/Hz at 1MHz frequency offset.

Keywords : Low noise amplifier ; Voltage-controlled oscillator ; Heterodyne receiver ; High voltage gain ; Low noise ; Cascode amplifier ; Common-source amplifi ; Phase noise

Table of Contents

Table of Contents 封面內頁 簽名頁 授權書………iii 中文摘要………

………iv 英文摘要………v 誌謝………

………vi Table of Contents………vii List of Figures

………ix List of Tables………xii Chapter I Introduction………1 1.1 The present research and development………1 1.2 Motivation

………2 1.2.1 The advantages of Bluetooth………3 1.2.2 The applications of Bluetooth………4 1.2.3 Bluetooth standards………4 Chapter II Introduction of receiver architecture…………6 2.1 Introduction………6 2.1.1 Heterodyne Receiver………

……7 2.2 Homodyne Receiver………10 2.3 Low-IF Receivers………14 Chapter III Low Noise Amplifier 3.1 Introduction………20 3.2 Parameter analysis of low noise amplifier………21 3.2.1 Noise figure………21 3.2.2 Nonlinearity effects………

……22 3.2.3 1-dB compression point………23 3.2.4 Input third-order intercept point………24 3.3 Circuit architecture of low noise amplifier………26 3.3.1 Input impedance match………26 3.3.2 Cascode amplifier………30 3.3.3 Output stage………30 3.3.4 Noise analysis of MOS device………31 3.3.5 Noise figure analysis of low noise amplifier……34 3.4 The simulation result of low noise amplifier

…………36 Chapter IV Voltage-controlled oscillator………47 4.1 Introduction………

…………47 4.2 Circuit analysis of voltage-controlled oscillator………48 4.2.1 The oscillation character of oscillator…………48 4.2.2 The negative resistance of feedback circuit……50 4.2.3 Varactor capacitor………51 4.2.4 Spiral inductor………54 4.2.5 Phase noise………58 4.3 The simulation result of the voltage-controlled oscillator………59 Chapter V Conclusion………

………63 References………64 REFERENCES

[1] Razavi B.

[2000], RF MICRO ELECTRONICS, McGraw-Hill, New York.

[2] Shaeffer, D.K.; Lee, T.H., “A 1.5 V, 1.5GHz CMOS Low-Noise Amplifier”, IEEE J. Solid-State Circuits, vol. 32, pp 745-759, May 1997.

[3] Yongmin Ge; Mayaram, K, “A comparative analysis of CMOS low noise amplifiers for RF applications”, Circuits and Systems, 1998.

ISCAS '98. Proceedings of the 1998 IEEE International Symposium on , Volume: 4 , 31 May-3 Jun 1998, pp.349 —352.

(2)

[4] J. C. Hung, R. M. Weng, C. C. Chang, K. Hsu and K. Y. Lin, “A 2V 2.4 GHz fully integrated CMOS LNA,” Proc. the 2001 IEEE Int’l Symposium on Circuits and Systems, vol. Vol. 4, pp. 466-469, May 2001.

[5] Xiaomin Yang; Wu, T.; McMacken, J, “Design of LNA at 2.4 GHz Using 0.25 μm Technology,” Silicon Monolithic Integrated Circuits in RF Systems, 2001. Digest of Papers. 2001 Topical Meeting on , 2001,pp.12-17.

[6] Debono, C.J.; Maloberti, F.; Micallef, J.., “A 1.8GHz CMOS Low-Noise Amplifier”, Electronics, Circuits and Systems, 2001. ICECS 2001.

The 8th IEEE International Conference on, Volume: 3 , 2001, pp. 1111 -1114 vol.3.

[7] Wei Guo; Daquan Huang, “The Noise and linearity optimization methods for a 1.9-GHz low noise amplifier”, Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002. 2002 3rd International Conference on, 2002, pp. 923 —927.

[8] Razavi B.

[2000], Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York.

[9] Jyh-Neng Yang; Chen-Yi Lee; Terng-Yin Hsu; Terng-Ren Hsu; Chung-Cheng Wang, “A 1.5-V, 2.4GHz CMOS Low-Noise Amplifier”, Proc. 43rd IEEE Midwest Symp. On Circuits and Systems, Lansing MI, Aug [2000] 8-11.

[10] Razavi B.

[2003], Design of Integrated Circuits for Optical Communications, McGraw-Hill, New York.

[11] Cheon Soo Kim; Min Park; Chung-Hwan Kim; Yeong Cheol Hyeon; Hyun Kyu Yu; Kwyro Lee; Kee Soo Nam, “A Fully Integrated 1.9 GHz CMOS Low-Noise Amplifier”, IEEE Microwave and Guided Wave Letters, vol. 8, Aug. 1998, pp. 293-295.

[12] Piljae Park; Cheon Soo Kim; Hyun Kyu Yu, “Linearity, Noise Optimization for Two Stage RF CMOS LNA”, Electrical and Electronic Technology, 2001. TENCON. Proceedings of IEEE Region 10 International Conference on , Volume: 2 , 2001. pp.756 -758 vol.2.

[13] Carlo Samori, Salvatore Levantino, and Andrea L. Lacaita Politecnico di Milano, “Integrated LC Oscillators for Frequency Synthesis in Wireless Applications”, IEEE Communications Magazine, May 2002.

[14] Neil H. E. Weste Kamran Eshranghian [2000], Principles of CMOS VLSI Design, Addison Wesley.

[15] BEN G. STREETMAN.SANJAY BANERJEE [2000], SOLID STATE ELECTRONIC DEVICES, 東華書局.

[16] DONALD A. NEAMEN [1997], SEMICONDUCTOR PHYSICS & DEVICES, McGraw-Hill Companies.

[17] Craninckx, J., M. Steyaert, “A 1.8 GHz Low-Phase Noise Spiral LCCMOS VCO,” VLSI Symp. Dig. Papers, pp. 30~31, June, 1996.

[18] P. Kinget, “A fully integrated 2.7V 0.35μm CMOS VCO for 5GHz wireless applications,” ISSCC Digest of Technical papers, pp.

226-227,Feb.1998.

[19] C. Lam and B. Razavi, “A 2.6GHz/5.2GHz CMOS voltage-controlled oscillator,” in ISSCC Dig. Tech. Papers, 1999, pp. 402-403.

[20] L. J. Gierkink, Eric A. M. Klumperink, Arnoud P. van der Wel, Gian Hoogzaad, Ed (A. J. M.) van Tuijl, and Bram Nauta, “Intrinsic 1/f Device Noise Reduction and Its Effect on Phase Noise in CMOS Ring Oscillators”, IEEE JOURNAL OF SOLID-CIRCUITS, VOL. 34, NO. 7, JULY 1999.

[21] B. De Muer, M. Borremans, M. Steayert, and G. Li Puma, “A 2-GHz low-phase-noise integrated LC-VCO set with flicker noise upconversion minimization,” IEEE J. of Solid-State Circuits, vol. 35, no.7, pp. 1034-1038, July 2000.

[22] M. Borremans, B. De Muer, and M. Steyaert, “Phase noise up-conversion reduction for integrated CMOS VCOs” Electron. Lett., vol. 36, pp.857-858, May 2000.

[23] ZHI-MING LIN, KUEI-CHEN HUANG, JUN-DA CHEN, and MEI-YUAN LIAO, “A CMOS VOLTAGE-CONTROLLED OSCILLATOR WITH TEMPERATURE COMPENSATED”, The Second IEEE Asia Pacific Conference on ASICs / Aug 28-30, 2000.

[24] Bram De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz Low-Phase-Noise Integrated LC-VCO Set with Flicker-Noise Upconversion Minimization”, IEEE JOURNAL OF SOLID-CIRCUITS, VOL. 35, NO. 7, July 2000.

[25] C. Samori et al., “A —94dBc/Hz at the 100kHz, Fully-Integrated, 5-GHz, CMOS VCO with 18% Tuning Range for Bluetooth Applications, ” IEEE 2001 Custom Integrated Circuit Conf., San Diego, CA, May 2001, pp. 201-4.

[26] Hui Tian and Abbas El Gamal, Fellow, IEEE, “Analysis of 1/f Noise in Switched MOSFET Circuits”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO.2,FEBRUARY 2001.

[27] Hitoshi Aoki and Masanori Shimasue, “Channel Width and Length Dependent Flicker Noise Characterization for n-MOSFETs”, IEEE 2001 Int. Conference on Microelectronic Test Structure, Vol 14, March 2001.

[28] 楊清淵, “射頻積體電路設計”, 國立中興大學上課講義, 民[92].

[29] YS.Park, S.Pinkett, J.S.Kenney, and W.D.Hunt, “A 2.4GHz VCO with an Integrated Acoustic Solidly Mounted Resonator”, IEEE ULTRASONICS SYMPOSIUM-839, 2001.

[30] Pietro Andreani and Henrink Sjoland, “A 2.2GHz CMOS VCO with Inductive Degeneration Noise Suppression”, IEEE 2001 CUSTOM INTEGRATED CIRCUITS CONFERENCE.

[31] Da Dalt, N.; Derksen, S.; Greco, P.; Sandner, C.; Schmid, H.; Strohmayer, K. “A fully integrated 2.4-GHz LC-VCO frequency synthesizer with 3-ps jitter in 0.18-μm standard digital CMOS copper technology”, Solid-State Circuits, IEEE Journal of , Volume: 37 Issue: 7 , July 2002.

[32] Troedsson, N.; Sjoland, H, “An Ultra Low Voltage 2.4GHz CMOS VCO”, Radio and Wireless Conference, 2002. RAWCON 2002. IEEE , 11-14 Aug. 2002.

參考文獻

相關文件

The major testing circuit is for RF transceiver basic testing items, especially for LNA Noise Figure and LTE EVM test method implement on ATE.. The ATE testing is different from

“IEEE P1451.2 D2.01 IEEE Draft Standard for A Smart Transducer Interface for Sensors and Actuators - Transducer to Microprocessor Communication Protocols

According to frequency response, filters can be divided into: (1) low-pass filter, (2) high-pass filter, (3) band-pass filter and band-stop filter.. This paper only chooses

Park, “A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics,” IEEE Trans. Antennas

Sugii, “Junction profile engineering with a novel multiple laser spike annealing scheme for 45-nm node high performance and low leakage CMOS technology,” in IEDM

This paper presents an integrated wireless network, rapid response to the three components of the Code (QRCode) and smart phones, build a low -cost "smart public bike

Laboratory of Solid State Microstructures, Nanjing University Laboratory of Solid State Microstructures, Nanjing University International Center for Materials Physics, Institute

timing-constrained path reconstruction for critical area minimization TYPR, timing and weight-constrained wire sizing for critical area minimization TYWS and yield-driven