• 沒有找到結果。

L打結數問題之研究

N/A
N/A
Protected

Academic year: 2021

Share "L打結數問題之研究"

Copied!
11
0
0

加載中.... (立即查看全文)

全文

(1)

行政院國家科學委員會專題研究計畫 成果報告

l -打結數問題之研究 研究成果報告(精簡版)

計 畫 類 別 : 個別型

計 畫 編 號 : NSC 99-2221-E-011-106-

執 行 期 間 : 99 年 08 月 01 日至 100 年 07 月 31 日 執 行 單 位 : 國立臺灣科技大學資訊管理系

計 畫 主 持 人 : 王有禮

計畫參與人員: 碩士班研究生-兼任助理人員:王子欣 碩士班研究生-兼任助理人員:林冠宇 博士班研究生-兼任助理人員:林建宏 博士班研究生-兼任助理人員:郭俊麟

處 理 方 式 : 本計畫可公開查詢

中 華 民 國 100 年 10 月 23 日

(2)

On Common Arcs of Cycles in Directed Chordal Rings

Ming–Tsan Juan1, Yue–Li Wang1,† and Cheng–Huang Hung1

1 Department of Information Management,

National Taiwan University of Science and Technology, Taipei, Taiwan

Abstract

A digraph D is a Hamiltonian digraph if D has a directed Hamiltonian cycle; in this case, D is denoted byD. In a digraph D with n vertices, the number of common arcs between cycles Cn and C` is denoted by KD(Cn, C`). Let C(D, `) denote the set of all `-cycles in D. The maximum number of common arcs between Cn and all `-cycles in D is defined to be κ1(D, `, Cn) = max

x∈C(D,`){KD(Cn, x)} if there exists a C` in C(D, `) and ∞ otherwise.

The maximum number of common arcs between all Cn’s and `-cycles in D is defined to be κ2(D, `) = max

Cn∈D1(D, `, Cn)}. If D is an orientation of an undirected graph G and there is a directed Hamiltonian cycle in D, then D is called a Hamiltonian digraph of G, denoted D(G). Let H denote the set of all Hamiltonian digraphs of G. The `-knot number of a graph G, denoted κ(G, `), is defined as min

x∈H2(x, `)}. In this paper, we are concerned with the

`-knot number of chordal rings R(2t, {t}).

Keywords: Knot numbers, Hamiltonian digraphs, Chordal rings, Cycle pancyclism.

1 Introduction

Given a digraph D with n vertices, an `-cycle in D, denoted C`, is a cycle of ` distinct vertices.

A (directed) Hamiltonian cycle is a (directed) cycle of length n. A digraph D is called a Hamiltonian digraph if D has a directed Hamiltonian cycle; in this case, D is denoted byD. For a Hamiltonian digraphD, an arc in C`, ` < n, but not in Cn is called an alone arc with respect to Cn; otherwise, it is a common arc between them. The number of common arcs between Cn and C` inD is denoted by KD(Cn, C`). Let C(D) denote the set of all `-cycles with ` < n in D

This work was supported in part by the National Science Council of the Republic of China under contracts NSC 97-2218-E-128-001- and NSC 97-2221-E-011-158-MY3.

All correspondence should be addressed to Professor Yue–Li Wang, Department of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC(Email: ylwang@cs.ntust.edu.tw).

(3)

and C(D, `) denote the set of all `-cycles in D. The maximum number of common arcs between a specific Cn and all `-cycles in D is defined as

κ1(D, `, Cn) =

max

x∈C(D,`)

{KD(Cn, x)} if C(D, `) 6= ∅,

otherwise.

The maximum number of common arcs between all Cn’s and all `-cycles inD for a specific ` is defined as κ2(D, `) = max

CnD1(D, `, Cn)}.

Proposition 1 If there is exactly one directed Hamiltonian cycle inD, then κ2(D, `) = κ1(D, `, Cn).

Let G be an undirected graph with vertex set V (G) and edge set E(G). Hereafter, we use n and m to denote the cardinalities of V (G) and E(G), respectively. Let D be an orientation of G with vertex set V (D) = V (G) and arc set A(D). Note that if (x, y) is an edge in E(G), then ex- actly one of arcs hx, yi and hy, xi exists in A(D). For consistency, we also use (x0, x1, . . . , xk, x0) to denote a cycle in an undirected graph while hx0, x1, . . . , xk, x0i denotes a directed cycle in a digraph. If D has a directed Hamiltonian cycle, then D is called a Hamiltonian digraph of G, denotedD(G). Let H(G) denote the set of all Hamiltonian digraphs of G. If the context is clear, then we simply write D and H rather than D(G) and H(G), respectively. When mentioning more than one Hamiltonian digraph of G, we use Di, i = 1, 2, . . . , |H| to denote them. For example, see Figure 1. Figure 1(a) shows a graph G and Figure 1(b) depicts all Hamiltonian digraphs in H(G).

a

b

d c

(a) A graph G

a

b

d c a

b

d c

a

b

d c

a

b

d c

(b) All Hamiltonian digraphs in H(G)

Figure 1: An example to illustrate H(G).

Based on the definition of κ2(D, `), the `-knot number of an undirected graph G, denoted κ(G, `), is defined as min

x∈H2(x, `)}. We use Figures 2 and 3 to demonstrate the above terms.

(4)

Figure 2(b) is a Hamiltonian digraph, sayD1, of Figure 2(a). We can see thatD1 has exactly one directed Hamiltonian cycle Cn= ha, b, c, d, e, f, g, ai. Furthermore, there also exist exactly one 3-, 4-, and 5-cycles inD1which are C3 = ha, b, g, ai, C4 = ha, e, f, g, ai, and C5= ha, d, e, f, g, ai, respectively. The values of KD1(Cn, C3), KD1(Cn, C4), KD1(Cn, C5), and KD1(Cn, C6) are 2, 3, 4, and ∞, respectively.

a b

c

e d f

g

(a) A graph G

a b

c

e d f

g

(b) D1(G)

Figure 2: An example to illustrate C(D1, `).

Figure 3 depicts all Hamiltonian digraphs in H of Figure 2(a).

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g a

b c

e d f

g a

b c

e d f

g

a b

c

e d f

g a

b c

e d f

g a

b c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g a b

c

e d f

g

a b

c

e d f

g a

b c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g a

b c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

a b

c

e d f

g

HD2

HD1 HD3 HD4 HD5 HD6

HD7 HD8 HD9 HD10 HD11 HD12

HD13 HD14 HD15 HD16 HD17 HD18

HD19 HD20 HD21 HD22 HD23 HD24

HD25 HD26 HD27 HD28 HD29 HD30

Figure 3: An illustration of all Hamiltonian digraphs in H of Figure 2(a).

(5)

In Figure 3, there is also only one Hamiltonian cycle in D5. However, there are two 3- cycles in D5, namely ha, b, g, ai and ha, d, e, ai, and their corresponding KD5(Cn, C3) are 2 and 1, respectively. Thus, κ1(D5, 3, Cn) = max{2, 1} = 2. InD15, there are two Hamiltonian cycles c1 = ha, b, c, d, e, f, g, ai and c2= ha, e, f, g, b, c, d, ai, one 6-cycle c3 = hb, c, d, e, f, g, bi, and two 4-cycles c4= ha, e, f, g, ai and c5 = ha, b, c, d, ai. We can see that there are no C3 and C5 inD15. Therefore, both κ2(D15, 3) and κ2(D15, 5) are ∞. The value of κ2(D15, 4) is max{κ1(D15, 4, c1), κ1(D15, 4, c2)} = 3. The value of κ2(D15, 6) is max{κ1(D15, 6, c1), κ1(D15, 6, c2)} = 5. Table 1 shows all values of κ2(Di, `). We can see that κ(G, 3), κ(G, 4), κ(G, 5), and κ(G, 6) are 1, 3, 4, and 5, respectively.

Table 1: All values of κ2(Di, `).

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

C3 2 2 2 2 2 2 2 2

C4 3 3 3 3 3 3 3 3

C5 4 4 4 4 4 4 4 4

C6 5 5

D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

C3 1 1 2 2

C4 3 3 3 3 3 3 3 3

C5 4 4 4 4 4 4

C6 5 5 5 5 5 5 5 5

D21 D22 D23 D24 D25 D26 D27 D28 D29 D30

C3 2 2 2 2 1 1 2 2

C4 3 3 3 3 3 3

C5 4 4 4 4 4 4 4 4 4 4

C6 5 5 5 5

The `-knot number problem was first studied by Galeana-Sanchez and Rajsbaum [7] in which they call the `-knot number problem the cycle-pancyclism problem. They also gave a lower bound of the `-knot number for tournaments with 3 6 ` 6 (n + 4)/2. Later on, they proposed the lower bounds of `-knot numbers for tournaments with larger cycles and bipartite tournaments [8,9,11,12]. Their results on the `-knot number problem are summarized in Table 2.

Note that a tournament is vertex-pancyclic [4,13]. Since a lot of graphs are not vertex-pancyclic, we modify the definition of the cycle-pancyclism problem as the `-knot number problem by considering κ1(D, `, Cn) = ∞ when digraph D does not have a cycle of length `.

(6)

Table 2: Previous results on `-knot numbers.

Graph classes (lower bounds of) `-knot numbers Tournaments [7] κ(G, `) = ` − 3, for 3 6 ` 6 n+42

Tournaments [8, 10] κ(G, `) > ` −2(n−3)n−`+3 − 2, for n+42 < ` < n Tournaments [9] κ(G, `) = ` − 4, if n 6 2` − 5

Bipartite tournaments [11] κ(G, `) = ` − 3, for 4 6 ` 6 n+42 Bipartite tournaments [12] κ(G, `) > ` − 4, for n+62 6 ` 6 n − 2

A ring is a graph G = (V, E) with V = {x0, x1, . . . , xn−1} and E = {(xi, x(i+1) mod n)|i = 0, 1, . . . , n − 1}. The edges in E are called ring edges. A chordal ring, denoted R(n, {l1, . . . , lt}) with l1 6 l2 6 . . . 6 lt, is an augmented ring where n is the number of nodes in the ring and li ∈ {2, . . . , bn/2c} connects every pair of nodes in the ring that are at distance li which is called a chord [5]. For some variations of chordal rings, the reader is referred to [1–3, 6, 14, 15]. In this paper, we are concerned with the `-knot number of a special chordal ring R(2t, {t}) (see Figure 4). In the next section, we shall derive the `-knot number for κ(R(2t, {t}), `). Note that the subscript of any vertex in a ring is taken modulo 2t.

x0x1 x2 x3

xt−3 xt+1

xt+2

xt+3

x2t−2

x2t−3

xt−2

xt−1

xt x2t−1

Figure 4: A chordal ring R(2t, {t}).

2 The `-knot number of R(2t, {t})

Theorem 2 For a chordal ring R(2t, {t}),

κ(R(2t, {t}), `) >

2 if ` = 3, 4,

t if t + 1 6 ` 6 2t − 1 and ` is an odd integer, min{` − 3, t, (3` − 2t)/2} if ` > 4 is an even integer,

otherwise.

(7)

References

[1] W. Arden and H. Lee, Analysis of chordal ring Network, IEEE Transactions on Computers 30 (1981) 291–295.

[2] J.C. Bermond, F. Comellas, and D.F. Hsu, Distributed loop computer networks: a Survey, Journal of Parallel and Distributed Computing 24 (1995) 2–10.

[3] J.C. Bermond and C. Thomassen, Symmetry properties of chordal rings of degree 3, Dis- crete Applied Mathematics 129 (2003) 211–232.

[4] J.C. Bermond and C. Thomassen, Cycle in digraphs - A survey. Journal of Graph Theory 5 (1981) 1–43.

[5] F.T. Boesch and R. Tindell, Circulants and their connectivity, Journal of Graph Theory 8 (1984) 487–499.

[6] M. Flammini, G. Gambosi, and S. Salomone, Interval labeling schemes for chordal rings, Pre-Proceedings of Colloquium on Structural Information and Communication Complexity, Ottawa, 1994, pp. 16–18.

[7] H. Galeana-Sanchez and S. Rajsbaum, Cycle-pancyclism in tournaments I, Graphs and Combinatorics 11 (1995) 233–243.

[8] H. Galeana-Sanchez and S. Rajsbaum, Cycle-pancyclism in tournaments II, Graphs and Combinatorics 12 (1996) 9–16.

[9] H. Galeana-Sanchez and S. Rajsbaum, Cycle-pancyclism in tournaments III, Graphs and Combinatorics 13 (1997) 57–63.

[10] H. Galeana-Sanchez and S. Rajsbaum, A conjecture on cycle pancyclism in tournaments, Discussiones Mathematicae-Graph Theory 18 (1998) 243–251.

[11] H. Galeana-Sanchez, Cycle-pancyclism in bipartite tournaments I, Discussiones Mathematicae-Graph Theory 24 (2004) 277–290.

[12] H. Galeana-Sanchez, Cycle-pancyclism in bipartite tournaments II, Discussiones Mathematicae-Graph Theory 24 (2004) 529–538.

[13] J.W. Moon, On subtournaments of a tournament, Canadian Mathematical Bulletin 9 (1966) 297–301.

[14] J.H. Park and K.Y. Chwa, Recursive circulant: A new topology for multicomputer net- works, in: Proc. of International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’94), Kanazawa, Japan, 1994, pp. 73–80.

[15] A.L. Rosenberg, Theoretical research on networks: models and methodology, in: Sirocco97, D. Krizanc, D. Peleg (Eds.),The Fourth International Colloquium on Structural Information and Communication Complexity, Proceedings in Informatics, Carleton Scienti;c, Ascona, Switzerland, 1 (1997) 283–293.

(8)

國科會補助計畫衍生研發成果推廣資料表

日期:2011/10/18

國科會補助計畫

計畫名稱: l -打結數問題之研究 計畫主持人: 王有禮

計畫編號: 99-2221-E-011-106- 學門領域: 計算機圖學

無研發成果推廣資料

(9)

99 年度專題研究計畫研究成果彙整表

計畫主持人:王有禮 計畫編號:99-2221-E-011-106- 計畫名稱:l -打結數問題之研究

量化

成果項目 實際已達成

數(被接受 或已發表)

預期總達成 數(含實際已

達成數)

本計畫實 際貢獻百

分比

單位

備 註 質 化 說 明:如 數 個 計 畫 共 同 成 果、成 果 列 為 該 期 刊 之 封 面 故 事 ...

期刊論文 0 0 100%

研究報告/技術報告 0 0 100%

研討會論文 0 0 100%

論文著作 篇

專書 0 0 100%

申請中件數 0 0 100%

專利 已獲得件數 0 0 100% 件

件數 0 0 100% 件

技術移轉

權利金 0 0 100% 千元

碩士生 2 2 100%

博士生 2 2 100%

博士後研究員 0 0 100%

國內

參與計畫人力

(本國籍)

專任助理 0 0 100%

人次

期刊論文 0 1 100%

研究報告/技術報告 0 0 100%

研討會論文 0 0 100%

論文著作 篇

專書 0 0 100% 章/本

申請中件數 0 0 100%

專利 已獲得件數 0 0 100% 件

件數 0 0 100% 件

技術移轉

權利金 0 0 100% 千元

碩士生 0 0 100%

博士生 0 0 100%

博士後研究員 0 0 100%

國外

參與計畫人力

(外國籍)

專任助理 0 0 100%

人次

(10)

其他成果

(

無法以量化表達之成 果如辦理學術活動、獲 得獎項、重要國際合 作、研究成果國際影響 力及其他協助產業技 術發展之具體效益事 項等,請以文字敘述填 列。)

成果項目 量化 名稱或內容性質簡述

測驗工具(含質性與量性) 0

課程/模組 0

電腦及網路系統或工具 0

教材 0

舉辦之活動/競賽 0

研討會/工作坊 0

電子報、網站 0

目 計畫成果推廣之參與(閱聽)人數 0

(11)

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性) 、是否適 合在學術期刊發表或申請專利、主要發現或其他有關價值等,作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估

■達成目標

□未達成目標(請說明,以 100 字為限)

□實驗失敗

□因故實驗中斷

□其他原因 說明:

2. 研究成果在學術期刊發表或申請專利等情形:

論文:□已發表 ■未發表之文稿 □撰寫中 □無 專利:□已獲得 □申請中 ■無

技轉:□已技轉 □洽談中 ■無 其他:(以 100 字為限)

3. 請依學術成就、技術創新、社會影響等方面,評估研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)(以 500 字為限)

打結數問題是循環泛圈問題的推廣問題。一個有向圖 D 具有漢米爾頓有向循環則稱 D 為漢 米爾頓有向圖,對一個具有漢米爾頓性質的無向圖 G,我們定義 G 的 k 打結數為對每個由 G 方向化後的漢米爾頓循環圖 D 中所有長度為 k 的循環和每個漢米爾頓循環之間最大的共 用弧數,如果 D 中沒有長度為 k 的循環,則共用弧數為∞,再針對所有的漢米爾頓循環圖 中取最小的共用弧數,即為 G 的 k 打結數。

泛圈問題自 1966 年第一次被提出後,有很多相關問題的研究。打結數問題在探討漢米爾 頓循環和其他長度的有向循環之間的關係,因此可以應用在這類有向循環的問題上。

數據

Figure 1: An example to illustrate H(G).
Figure 3 depicts all Hamiltonian digraphs in H of Figure 2(a).
Table 1: All values of κ 2 ( D i , `).
Table 2: Previous results on `-knot numbers.

參考文獻

相關文件

Department of Mathematics, National Taiwan Normal University,

03/2011 receiving certificate of Honorary Chair Professor from National Taiwan University of Science &amp; Technology... 05/2013 receiving certificate of Honorary Chair Professor

2 Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan!. ⇤ Author to whom correspondence should

2 Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan..

2 Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan..

Department of Mathematics, National Taiwan Normal University, Taiwan..

Professor of Computer Science and Information Engineering National Chung Cheng University. Chair

2 Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan.. 3 Department of Materials Science and Engineering, National Tsing Hua