• 沒有找到結果。

永磁直流無刷馬達無感測控制技術之研究 曾智堂、陳盛基

N/A
N/A
Protected

Academic year: 2022

Share "永磁直流無刷馬達無感測控制技術之研究 曾智堂、陳盛基"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

永磁直流無刷馬達無感測控制技術之研究 曾智堂、陳盛基

E-mail: 317706@mail.dyu.edu.tw

摘 要

本文提出無刷直流馬達(BLDC)偵測反電動勢的架構,發展結合類比與數位控制的無感測控制技術。控制核心採

用Microchip公司所生產之單晶片PIC16F877,作為無感測控制IC,並且整合無感測控制技術及馬達驅動功率模組設計之關 鍵技術。在馬達靜止時偵測轉子之初始位置,依啟動程序使馬達以較低的開環速度運轉,隨後加速到某一特定的轉速值;

當反電動勢大小足以提供無感測演算法正確的估測轉子位置時,即切換至無感測驅動模式,不需要額外的位置感測器,可 降低成本。實驗結果驗證所提出方法之可行性。

關鍵詞 : 無刷直流馬達(BLDC)、反電動勢、無感測控制、馬達控制晶片、馬達驅動功率模組 目錄

封面內頁 簽名頁 授權書.........................iii 中文摘要............

............iv 英文摘要........................v 誌謝.........

.................vi 目錄..........................vii 圖目錄...

......................x 表目錄........................xiv 符號 索引........................xv 第一章 緒論 ...................

...1 1.1 前言....................1 1.2 研究動機與目的...............2 1.3 文獻回顧..................3 1.4 研究的步驟.................7 1.5系統架 構..................8 1.6 內容大綱..................9 1.7 本文特點與貢獻

...............10 第二章 無刷直流馬達控制原理.............11 2.1無刷直流馬達基 本介紹............11 2.2無刷直流馬達數學模型............11 2.3馬達驅動方式.....

...........14 2.4六步方波控制驅動方式............15 2.5霍爾元件換相原理.......

.......24 第三章 無感測控制策略.................28 3.1量測馬達反電動勢......

........28 3.2反電動勢估測法...............31 3.3無感控制啟動策略..........

....32 3.4靜止起動邏輯................34 第四章 無感測速度控制系統..........

.....37 4.1 無感測換相原理分析.............37 4.2 電壓脈波寬度調變............

..38 4.3 轉速控制..................42 第五章 實驗結果與討論..............

...44 5.1 MPLAB IDE整合式開發環境..........44 5.2 PIC16F877控制核心介紹..........

.45 5.3 硬體建構與整合...............49 5.3.1驅動電路...............51 5.3.2無感 測器電路..............54 5.4 程式流程..................55 5.5 裝感測器之驅動 實驗結果分析.........66 5.6 無感測驅動器實驗結果分析..........71 第六章 結論與未來展望.

................75 6.1 結論....................75 6.2 未來展望.....

.............75 參考文獻........................77 附錄A.......

..................85 附錄B.........................98 附錄C..

.......................103 參考文獻

[1] 王秀和,「永磁電機」,中國電力出版社,2007。

[2] 孫清華,「最新無刷直流馬達」,全華科技圖書,2001。

[3] 曾百由,「數位訊號控制器原理與應用」,宏友出版社,2007。

[4] 洪正瑞,「詳細解析PIC16F877原理與應用」,台科大圖書股份有限公司,2007。

[5] 趙春棠,「PIC單晶片學習秘笈以PIC16F877為例」,全威圖書有限公司,2005。

[6] 劉添華、路承達,「單相散熱風扇的無感轉軸偵測元件驅動及其 積體電路晶片的研製」,電機月刊第十九卷第八期,2009,144-153 頁。

[7] 鄒應嶼,「無刷直流馬達無感測換相控制IC」,國立交通大學,電機與控制工程學系,2002。

(2)

[8] 陳融生,「無量測器直流無刷馬達控制系統設計與製作」,碩士論文,國立臺灣科技大學,電機工程學系,2003。

[9] 詹晉榮,「直流無刷馬達驅動系統實務設計」,碩士論文,私立 大葉大學,電機工程學系,2003。

[10] 張育源,「無刷直流馬達無感測器驅動系統之研製」,碩士論文,國立中央大學,電機工程學系,2002。

[11] D. C. Hanselman, “Brushless permanent magnet motor design,” second edition, 2003.

[12] B. Ward, “Brushless DC motor control made easy,” AN857 Appl. Note, in Microchip Technology Inc., 2002.

[13] D. Torres, “Sensorless BLDC control with back-EMF filtering using a majority function,” AN1160 Appl. Note, in Microchip Technology Inc., 2008.

[14] C. Elliott, “Using the dsPIC30F for sensorless BLDL control,” AN901 Appl. Note, in Microchip Technology Inc., 2004.

[15] R. Condit, “Sensorless BLDL control with back-EMF filtering,” AN1083 Appl. Note, in Microchip Technology Inc., 2007.

[16] W. Wang, Z. Wu, W. Jin, J. Ying, “Starting methods for hall-less single phase BLDC motor,” IEEE IECON, November 2005, pp.

1605-1609.

[17] I. Kenichi, U. Hideo, K. Minoru, E. Tsunehiro, M. Katsuo, “Microcomputer control for sensorless brushless motor,” IEEE Trans. Ind.

Appl., vol. IA-21, no. 3, May 1985, pp. 595-601.

[18] J. Shao, D. Nolan, M. Teissier, D. Swanson, “A novel microcontroller-based sensorless brushless DC (BLDC) Motor drive for automotive fuel pumps,” IEEE Trans. In. Appl., vol. 39, no. 6, Nov.-Dec. 2003, pp. 1734-1740.

[19] N. Bianchi, S. Bolognani, J.H. Jang, S.K. Sul, “Comparison of PM motor structures and sensorless control techniques for zero-speed rotor position detection,” IEEE Trans. on Power Electron., vol. 22, no. 6, Nov. 2007, pp. 2466-2475.

[20] T. D. Batzel, K. Y. Lee, “Electric propulsion with sensorless permanent magnet synchronous motor: implementation and performance,”

IEEE Trans. on Energy Conversion, vol. 20, no. 3, Sept. 2005, pp. 575-583.

[21] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, Nov.-Dec. 2004, pp. 1595-1604.

[22] H. C. Chen, Y. C. Chang, C. K. Huang, “Practical sensorless control for inverter-fed BDCM compressors,” IET Electron. Power Appl., vol. 1, no. 1, January 2007, pp. 127-132.

[23] K. Y. Cheng, Y. Y. Tzou, “Design of a sensorless commutation IC for BLDC motors,” IEEE Trans. on Power Electron., vol. 18, no. 6, Nov. 2003, pp. 1365-1375.

[24] A. Piippo, M. Hinkkanen, J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, Feb. 2008, pp. 570-576.

[25] C. S. Staines, C. Caruana, G. M. Asher, M. Sumner, “Sensorless control of induction machines at zero and low frequency using zero sequence currents,” IEEE Trans. Ind. Electron., vol. 53, no. 1, Feb. 2006, pp. 195-206.

[26] T. H. Kim, M. Ehsani, “Sensorless control of the BLDC motors from near-zero to high speeds,” IEEE Trans. on Power Electron., vol. 19, no. 6, Nov. 2004, pp. 1635-1645.

[27] C. G. Kim, J. H. Lee, H. W. Kim, M. J. Youn, “Study on maximum torque generation for sensorless controlled brushless DC motor with trapezoidal back EMF,” IEE Proc. Electron. Power Appl., vol. 152, no. 2, March 2005, pp. 277-291.

[28] G. J. Su, J. W. McKeever, “Low-cost sensorless control of brushless DC motors with improved speed range,” IEEE Trans. on Power Electron., vol. 19, no. 2, March 2004, pp. 296-302.

[29] J. P. Johnson, M. Ehsani, Y. Guzelgunler, “Review of sensorless methods for brushless DC,” IEEE Trans. Ind. Appl., vol. 1, no. 3-7, Oct.

1999, pp. 143-150.

[30] D. H. Jung, I. J. Ha, “Low-cost sensorless control of brushless DC motors using a frequency-independent phase shifter,” IEEE Trans. on Power Electron., vol. 15, no. 4, July 2000, pp. 744-752.

[31] S. Morimoto, M. Sanada, Y. Takeda, E. Tsunehiro, M. Katsuo, “Mechanical sensorless drives of IPMSM with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, Sept.-Oct. 2006, pp. 1241-1248.

[32] S. G. Burrow, P. H. Mellor, P. Churn, T. Sawata, M. Holme, “Sensorless operation of a permanent-magnet generator for aircraft,” IEEE Trans. Ind. Appl., vol. 44, no. 1, Jan.-Feb. 2008, pp. 101-107.

[33] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, April 1996, pp. 300-308.

[34] N. Imai, S. Morimoto, M. Sanada, Y. Takeda, “Influence of magnetic saturation on sensorless control for interior permanent-magnet synchronous motors with concentrated windings,” IEEE Trans. Ind. Appl., vol. 42, no. 5, Sept.-Oct. 2006, pp. 1193-1200.

[35] A. Halvaei Niasar, A. Vahedi, H. Moghbelli, “A novel position sensorless control of a four-switch, brushless DC motor drive without phase shifter,” IEEE Trans. on Power Electron., vol. 23, no. 6, Nov. 2008, pp. 3079-3087.

[36] S. Chi, Z. Zhang, L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications”, IEEE Trans. Ind. Appl., vol. 45, no. 2, March-April 2009, pp. 582-590.

[37] M. Jemli, H. B. Azza, M. Boussak, M. Gossa, “Sensorless indirect stator field orientation speed control for single-phase induction motor drive,” IEEE Trans. on Power Electron., vol. 24, no. 6, June 2009, pp. 1618-1627.

[38] N. Bianchi, S. Bolognani, “Sensorless-oriented design of PM motors,” IEEE Trans. Ind. Appl., vol. 45, no. 4, July-Aug. 2009, pp.

(3)

1249-1257.

[39] S. M. Gadoue, D. Giaouris, J. W. Finch, “Sensorless control of induction motor drives at very low and zero speeds using neural network flux observers,” IEEE Trans. Ind. Electron., vol. 56, no. 8, Aug. 2009, pp. 3029-3039.

[40] C. Lascu, I. Boldea, F. Blaabjerg, “A class of speed-sensorless sliding-mode observers for high-performance induction motor drives,” IEEE Trans. Ind. Electron., vol. 56, no. 9, Sept. 2009, pp. 3394-3403.

[41] H. C. Chen, Y. C. Chang, C. K. Huang, “Practical sensorless control for inverter-fed BDCM compressors,” IET Electron. Power Appl., vol. 1, no. 1, January 2007, pp. 127-132.

[42] B. Fahimi, A. Emadi, B. Jr. Sepe, “Position sensorless control,” IEEE Ind. Appl. Magazine, vol. 10, no. 1, Jan-Feb 2004, pp. 40-47.

[43] H. B. Wang, H. P. Liu, “A novel sensorless control method for brushless DC motor,” IET Electron. Power Appl., vol. 3, no. 3, May 2009, pp. 240-246.

[44] S. Ichikawa, M. Tomita, S. Doki, S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, Sept.-Oct. 2006, pp. 1264-1274.

[45] D. Gambetta, A. Ahfock, “New sensorless commutation technique for brushless DC motors,” IET Electron. Power Appl., vol. 3, no. 1, January 2009, pp. 40-49.

[46] J. I. Ha, “Analysis of inherent magnetic position sensors in symmetric AC machines for zero or low speed sensorless drives,” IEEE Trans. on Magnetics, vol. 44, no. 12, Dec. 2008, pp. 4689-4696.

[47] B. Blunier, M. Pucci, G. Cirrincione, M. Cirrincione, A. Miraoui, “ A scroll compressor with a high-performance sensorless induction motor drive for the air management of a PEMFC system for automotive applications,” IEEE Trans. on Vehicular Technology, vol. 57, no. 6, Nov. 2008, pp. 3413-3427.

[48] S. Shinnaka, “A new speed-varying ellipse voltage injection method for sensorless drive of permanent-magnet synchronous motors with pole saliency-new PLL method using high-frequency current component multiplied signal,” IEEE Trans. Ind. Appl., vol. 44, no. 3, May-June 2008, pp. 777-788.

[49] S. Shinnaka, “New D-state-observer-based vector control for sensorless drive of permanent-magnet synchronous motors,” IEEE Trans. Ind.

Appl., vol. 41, no. 3, May-June 2005, pp. 825-833.

[50] Q. Jiang, C. Bi, R. Huang, “A new phase-delay-free method to detect back EMF zero-crossing points for sensorless control of spindle motors,

” IEEE Trans. on Magnetics, vol. 41, no. 7, July 2005, pp. 2287-2294.

[51] R. Wu, G. R. Slemon, “A permanent magnet motor drive without a shaft sensor,” IEEE Trans. Ind. Appl., vol. 27, no 5, Sept.-Oct. 1991, pp. 1005-1011.

[52] A. B. Kulkarni, M. Ehsani, “A novel position sensor elimination technique for the interior permanent-magnet synchronous motor drive,”

IEEE Trans. Ind. Appl., vol. 28, no 1, Jan.-Feb. 1992, pp. 144-150.

[53] R. Mizutani, T. Takeshita, N. Matsui, “Current model-based sensorless drives of salient-pole PMSM at low speed and standstill,” IEEE Trans. Ind. Appl., vol. 34, no.4, July-Aug. 1998, pp. 841-846.

參考文獻

相關文件

Vaidya, Darbhanga: The Mithila Institute, 1967.(Buddhist Sanskrit Texts

The min-max and the max-min k-split problem are defined similarly except that the objectives are to minimize the maximum subgraph, and to maximize the minimum subgraph respectively..

“Polysilicon Thin Film Transistors Fabricated at 100℃ on a Flexible Plastic Substrate,” IEEE Electron Device Meeting, p. “Polysilicon Thin Film Transistors

Kwong, “Metal nanocrystal memory with high-k tunneling barrier for improved data retention, ” IEEE Trans. Electron

Lin, “Automatic Music Genre Classification Based on Modulation Spectral Analysis of Spectral and Cepstral Features”, IEEE Trans.. on

IEEE 1394 Controller IC、無線週邊控制晶片 Wireless Peripheral Controller IC、滑鼠控制晶片 Mouse Controller IC、鍵盤控制晶片 Keyboard Controller IC、掃描器控制晶片

Hwang, “An O (nk)-time algorithm for computing the reliability of a circular consecutive-k-out-of-n:F system,” IEEE Trans on Reliability, Vol.. Shantikumar, “Recursive algorithm

Shamoon, “Secure Spread Spectrum Watermarking for Multimedia,” IEEE Trans. on Image