• 沒有找到結果。

Section 7.8 Improper Integrals

N/A
N/A
Protected

Academic year: 2022

Share "Section 7.8 Improper Integrals"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 7.8 Improper Integrals

68. Improper Integrals that Are Both Type 1 and Type 2 The integralR

a f (x)dx is improper because the interval [a, ∞) is infinite. If f has an infinite discontinuity at a, then the integral is improper for a second reason. In this case we evaluate the integral by expressing it as a sum of improper integral of Type 2and Type 1 as follows:

Z a

f (x)dx = Z c

a

f (x)dx + Z

c

f (x)dx c > a Evaluate the given integral if it is convergent.

Z 2

1 x√

x2− 4dx Solution:

716 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION 54. For 0   ≤ 1, sin2

√ ≤ 1

√. Now

 =

0

√1

 = lim

→0+

−12 = lim

→0+

212

= lim

→0+

2 − 2√



= 2 − 0 = 2, so  is convergent, and by

comparison,

0

sin2

√ is convergent.

55.

0

√ 

 (1 + )=

1 0

√ 

 (1 + )+

1

√ 

 (1 + )= lim

→0+

1

√ 

 (1 + )+ lim

→∞

1

√ 

 (1 + ). Now

 

√ (1 + )=

 2 

(1 + 2)

 =,  = 2,

 = 2 

= 2

 

1 + 2 = 2 tan−1 +  = 2 tan−1√ + , so

0

√ 

 (1 + ) = lim

→0+

2 tan−1

1

+ lim

→∞

2 tan−1

 1

= lim

→0+

2 4

− 2 tan−1

 + lim

→∞

2 tan−1

 − 2 4

= 2 − 0 + 2 2

−2 = .

56. 2



√

2− 4 =

3 2



√

2− 4+

3



√

2− 4= lim

→2+

3



√

2− 4+ lim

→∞

3



√

2− 4. Now

 

√

2− 4=

 2 sec  tan  

2 sec  2 tan 

 = 2 sec , where 0≤   2 or  ≤   32

=12 +  =12sec−11

2 + , so

2



√

2− 4 = lim

→2+

1

2sec−11 23

+ lim

→∞

1 2sec−11

2

3=12sec−13 2

− 0 +12

2

−12sec−13 2

= 4.

57. If  = 1, then

1 0



= lim

→0+

1



 = lim

→0+[ln ]1 = ∞. Divergent If  6= 1, then

1 0



= lim

→0+

1



[note that the integral is not improper if   0]

= lim

→0+

−+1

− + 1

1

= lim

→0+

1 1 − 

 1 − 1

−1

If   1, then  − 1  0, so 1

−1 → ∞ as  → 0+, and the integral diverges.

If   1, then  − 1  0, so 1

−1 → 0 as  → 0+and

1 0



= 1 1 − 

→0lim+

1 − 1−

= 1

1 − . Thus, the integral converges if and only if   1, and in that case its value is 1

1 − .

58. Let  = ln . Then  =  ⇒ 



 (ln ) =

1



. By Example 4, this converges to 1

 − 1if   1 and diverges otherwise.

59. First suppose  = −1. Then

1 0

ln   =

1 0

ln 

  = lim

→0+

1

ln 

  = lim

→0+

1

2(ln )21

= −12 lim

→0+(ln )2= −∞, so the integral

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

74. The average speed of molecules in an ideal gas is

¯ v = 4

√π

 M

2RT

3/2Z 0

v3e−M v2/(2RT )dv

where M is the molecular weight of the gas, R is the gas constant, T is the gas temperature, and v is the molecular speed. Show that

¯ v =

r8RT πM Solution:

718 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION So

+1− = −+1−−

−( + 1)− = −+1−+ ( + 1)

−and

lim→∞

0+1− = lim

→∞

−+1−

0+ ( + 1) lim

→∞

0−

= lim

→∞

−+1−+ 0+ ( + 1)! = 0 + 0 + ( + 1)! = ( + 1)!,

so the formula holds for  + 1. By induction, the formula holds for all positive integers. (Since 0! = 1, the formula holds for  = 0, too.)

61. (a)  =

−∞  =0

−∞  +

0  , and

0   = lim

→∞

0  = lim

→∞

1

22 0= lim

→∞

1

22− 0

= ∞, so  is divergent.

(b)

−  =1

22

−=122122= 0, so lim

→∞

−  = 0. Therefore,

−∞  6= lim

→∞

− .

62.Let  = 

2 so that  = 4

√32

0

3−2. Let  denote the integral and use parts to integrate . Let  = 2,

 = −2 ⇒  = 2 ,  = −1 2−2:

 = lim

→∞

− 1

22−2

0

+1

0

−20= − 1 2 lim

→∞

2−2 +1

 lim

→∞

−1 2−2

= −H 1

2· 0 − 1

22(0 − 1) = 1 22 Thus,  = 4

√32· 1

22 = 2

()12 = 2

[ (2 )]12 =2√ 2√

√ 

 =

8

.

63.Volume =

1

1

2

 =  lim

→∞

1



2 =  lim

→∞

−1

1

=  lim

→∞

 1 −1

=   ∞.

64.Work =

 

2  = lim

→∞

 

2  = lim

→∞ 

−1

=   lim

→∞

−1

 + 1

=  

 , where

 =mass of the earth = 598 × 1024kg,  = mass of satellite = 103kg,  = radius of the earth = 637 × 106m, and

 =gravitational constant = 667 × 10−11N·m2kg.

Therefore, Work = 667 × 10−11· 598 × 1024· 103

637 × 106 ≈ 626 × 1010J.

65.Work =

  = lim

→∞



2  = lim

→∞

1

−1

= 

 . The initial kinetic energy provides the work, so 1220= 

 ⇒ 0=

2

 . 66.() =

√ 2

2− 2() and () =12( − )2

() = lim

→+

( − )2

√2− 2  = lim

→+

3− 22+ 2

√2− 2 

= lim

→+

 

3

√2− 2 − 2

2

√2− 2 + 2

√ 

2− 2

= lim

→+

1− 22+ 23

= 

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

75. We know from Example 1 that the region R = {(x, y)|x ≥ 1, 0 ≤ y ≤ 1/x} has infinite area. Show that by rotating Rabout the x-axis we obtain a solid with finite volume.

Solution:

718 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION So

+1− = −+1−−

−( + 1)− = −+1−+ ( + 1)

−and

lim→∞

0+1− = lim

→∞

−+1−

0+ ( + 1) lim

→∞

0−

= lim

→∞

−+1−+ 0+ ( + 1)! = 0 + 0 + ( + 1)! = ( + 1)!,

so the formula holds for  + 1. By induction, the formula holds for all positive integers. (Since 0! = 1, the formula holds for  = 0, too.)

61. (a)  =

−∞  =0

−∞  +

0  , and

0   = lim

→∞

0  = lim

→∞

1

22 0= lim

→∞

1

22− 0

= ∞, so  is divergent.

(b)

−  =1

22

−=122122= 0, so lim

→∞

−  = 0. Therefore,

−∞  6= lim

→∞

− .

62.Let  = 

2 so that  = 4

√32

0

3−2. Let  denote the integral and use parts to integrate . Let  = 2,

 = −2 ⇒  = 2 ,  = −1 2−2:

 = lim

→∞

− 1

22−2

0

+1

0

−20= − 1 2 lim

→∞

2−2 +1

 lim

→∞

−1 2−2

= −H 1

2· 0 − 1

22(0 − 1) = 1 22 Thus,  = 4

√32· 1

22 = 2

()12 = 2

[ (2 )]12 =2√ 2√

√ 

 =

8

.

63.Volume =

1

1

2

 =  lim

→∞

1



2 =  lim

→∞

−1

1

=  lim

→∞

 1 −1

=   ∞.

64.Work =

 

2  = lim

→∞

 

2  = lim

→∞ 

−1

=   lim

→∞

−1

 + 1

=  

 , where

 =mass of the earth = 598 × 1024kg,  = mass of satellite = 103kg,  = radius of the earth = 637 × 106m, and

 =gravitational constant = 667 × 10−11N·m2kg.

Therefore, Work = 667 × 10−11· 598 × 1024· 103

637 × 106 ≈ 626 × 1010J.

65.Work =

  = lim

→∞



2  = lim

→∞

1

−1

= 

 . The initial kinetic energy provides the work, so 1220= 

 ⇒ 0=

2

 . 66.() =

√ 2

2− 2() and () =12( − )2

() = lim

→+

( − )2

√2− 2  = lim

→+

3− 22+ 2

√2− 2 

= lim

→+

 

3

√2− 2 − 2

2

√2− 2 + 2

√ 

2− 2

= lim

→+

1− 22+ 23

= 

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

80. As we saw in Section 3.8, a radioactive substance decays exponentially: The mass at time t is m(t) = m(0)ekt, where m(0) is the initial mass and k is a negative constant. The mean life M of an atom in the substance is

M = −k Z

0

tektdt

1

(2)

For the radioactive carbon isotope, 14C, used in radiocarbon dating, the value of k is −0.000121. Find the mean life of a14C atom.

Solution:

SECTION 7.8 IMPROPER INTEGRALS ¤ 719 For 1: Let  =√

2− 2 ⇒ 2= 2− 2, 2= 2+ 2, 2  = 2 , so, omitting limits and constant of integration,

1=

 (2+ 2)

  =

(2+ 2)  = 133+ 2 =13(2+ 32)

=13

2− 2(2− 2+ 32) = 13

2− 2(2+ 22) For 2: Using Formula 44, 2= 

2

√2− 2+2

2 ln +√

2− 2.

For 3: Let  = 2− 2 ⇒  = 2 . Then 3=1 2

 

√ =12 · 2√

 =

2− 2. Thus,

 = lim

→+

1 3

√2− 2(2+ 22) − 2

 2

√2− 2+2

2 ln +√

2− 2 + 2

2− 2

= lim

→+

1 3

√2− 2(2+ 22) − 2

 2

√2− 2+2

2 ln +√

2− 2 + 2

2− 2

− lim

→+

1 3

√2− 2

2+ 22

− 2

 2

√2− 2+2

2 ln +√

2− 2 + 2

2− 2

=1 3

√2− 2(2+ 22) − 2ln +√

2− 2

  −

−2ln ||

=13

2− 2(2+ 22) − 2ln

 +√

2− 2

67.We would expect a small percentage of bulbs to burn out in the first few hundred hours, most of the bulbs to burn out after close to 700 hours, and a few overachievers to burn on and on.

(a) (b) () = 0()is the rate at which the fraction  () of burnt-out bulbs increases as  increases. This could be interpreted as a fractional burnout rate.

(c)

0 ()  = lim

→∞ () = 1, since all of the bulbs will eventually burn out.

68. =

0

 = lim

→∞

1

2 ( − 1) 

0

[Formula 96, or parts] = lim

→∞

1

− 1

2

−1

2



.

Since   0 the first two terms approach 0 (you can verify that the first term does so with l’Hospital’s Rule), so the limit is equal to 12. Thus,  = − = −

12

= −1 = −1(−0000121) ≈ 82645 years.

69.  =

0

(1 − −)

 − = 

 lim

→∞

0

−− (−−)



=

 lim

→∞

 1

−−− 1

− − (−−)

0

= 

 lim

→∞

 1

−+ 1

( + )(+)

 1

−+ 1

 + 



=

1

− 1

 + 

=

 +  − 

( + )

= 

( + )

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Evaluate the surface

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part..  is periodic with