• 沒有找到結果。

A 40-110 GHz High-Isolation CMOS Traveling-Wave T/R Switch by Using Parallel Inductor

N/A
N/A
Protected

Academic year: 2021

Share "A 40-110 GHz High-Isolation CMOS Traveling-Wave T/R Switch by Using Parallel Inductor"

Copied!
37
0
0

加載中.... (立即查看全文)

全文

(1)

CCE/EE NCKU

TU4H: Advanced CMOS and SiGe Millimeter Wave Systems

TU4H-4

A 40-110 GHz High-Isolation CMOS Traveling-Wave

T/R Switch by Using Parallel Inductor

Wen-Chian Lai

and Huey-Ru Chuang

Institute of Computer and Communication Engineering

Department of Electrical Engineering

(2)

IMS2015

1

TU4H-4

Outline

 Motivation and introduction

 MMW CMOS T/R switch: design procedure

(in 90-nm CMOS)

 Simulation & measurement results

 Performance comparison

 Conclusion

 References

(3)

IMS2015

2

TU4H-4

Outline

 Motivation and introduction

 MMW CMOS T/R switch: design procedure

(in 90-nm CMOS)

 Simulation & measurement results

 Performance comparison

 Conclusion

 References

(4)

IMS2015

3

TU4H-4

Motivation and introduction

Application for millimeter-wave

57-64 GHz unlicensed band for

wireless personal area network

(WPAN)

wireless video area network

(WVAN)

77 GHz bands for automotive radar

Automotive cruise control (ACC),

Collision warning (CW),

Anti-collision

(AC) and Lane change assist(LCA)

For 94 GHz applications

MMW imaging radar for concealed

weapons detection

[1]

Medical imaging

applications [2][3]

Imaging

and

gesture recognition

[4]

(5)

IMS2015

4

TU4H-4

Motivation and introduction

T/R switch in MMW RF transceiver:

T/R switch

connects

antenna

,

PA

and

LNA

Design considerations:

 Low insertion loss

Reduce burden of the gain on

LNA or PA

 High isolation

Reduce

leakage signal

from the transmitter

 High power handling

High IP

1dB

:

avoid power saturation

(6)

IMS2015

5

TU4H-4

Outline

 Motivation and introduction

 MMW CMOS T/R switch: design procedure

(in 90-nm CMOS)

 Simulation & measurement results

 Performance comparison

 Conclusion

 References

(7)

IMS2015

6

TU4H-4

MMW CMOS T/R switch: design procedure

 Broadband CMOS MMW high-isolation T/R switch schematic

Shunt inductor:

improve isolation

Traveling-wave concept:

increase operation bandwidth

Body floating:

reduce insertion loss

Matching network:

improve return loss

Parallel inductor Tx Ant. Output matching Rx Output matching Input matching Vc Vc Vc1 Vc1 Vc Vc1 M2 M1 M3 M5 M6 M4

(8)

IMS2015

7

TU4H-4

MMW CMOS T/R switch: design procedure

 Trade off in traveling-wave SPST switch design[5]:

Switch off (MOS transistors in triode region):

MOS transistors are equivalent to

resistors

 more traveling-wave SPST stages

isolation

(Appendix)

Switch on (MOS transistors in cut off region):

MOS transistors are equivalent to

capacitance

 more traveling-wave SPST stages

insertion loss

[5] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, and R.-B. Wu, “Millimeter-wave MMIC passive HEMT switches using traveling-wave concept,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1798–1808, Aug. 2004.

(9)

IMS2015

8

TU4H-4

MMW CMOS T/R switch: design procedure

Series T/R switch with parallel-inductors:

The

LC tank

equivalent to a high impedance:

reduce leakage signal (high isolation)

narrow-band response

By adopting traveling-wave stage after the series switch:

more traveling-wave SPST stages

isolation & bandwidth

Traveling-wave SPST Traveling-wave SPST

For high-isolation

operation

(10)

IMS2015

9

MMW CMOS T/R switch: design procedure

SPDT switch design and operation:

 Parallel-shunt inductor is chosen as 154 pH @ 109 GHz

 For insertion loss and isolation, traveling-wave stage is chosen n=2

40 50 60 70 80 90 100 110 Frequency (GHz) -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -I n s e rt io n l o s s

Single resonated switch

Resonated switch with traveling wave,n=1 Resonated switch with traveling wave,n=2 Resonated switch with traveling wave,n=3 Resonated switch with traveling wave,n=4

40 50 60 70 80 90 100 110 Frequency (GHz) -70 -60 -50 -40 -30 -20 -10 0 -I s o la ti o n ( d B )

Single resonated switch

Resonated switch with traveling wave,n=1 Resonated switch with traveling wave,n=2 Resonated switch with traveling wave,n=3 Resonated switch with traveling wave,n=4

(11)

IMS2015

10

TU4H-4

0 0.2 0.5 1 2 5 10 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 0 -2 0 -3 0 -40 -50 -60 -70 -80 -90 -10 0 -11 0 -12 0 -1 30 -1 40 -1 50 -1 60 -1 70

Step 1(no matching circuit) Step2 (Add series transmission line) Step3 (Add shunt-open stub) Step 4 (Add pad)

Ant. return loss from 40 to 110 GHz

0 0.2 0.5 1 2 5 10 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 0 -2 0 -3 0 -40 -50 -60 -70 -80 -90 -10 0 -11 0 -12 0 -1 30 -1 40 -1 50 -1 60 -1 70

Step 1 (No matching circuit) Step 2 (Add series transmission line) Step 3 (Add shunt-open stub) Step 4 (Add pad)

Output return loss from 40 to 110 GHz

MMW CMOS T/R switch: design procedure

Matching networks:

 40 -110 GHz:

return loss > 10 dB.

40 50 60 70 80 90 100 110 Frequency (GHz) -40 -35 -30 -25 -20 -15 -10 M ag n it u d e (d B )

-Ant. return loss with matching -Output return loss with mathcing

(12)

IMS2015

11

TU4H-4

TSMC 90-nm CMOS technology

 The designed T/R switch is fabricated

with TSMC 90-nm CMOS technology

 A multi-layer structure (1P9M)

To achieve low conductor loss

 The signal path and matching elements are

arranged

on

M9

(thick top metal)

To prevent currents from injecting into the

lossy

substrate

 The ground plane is placed at

the bottom metal (M1)

(13)

IMS2015

12

TU4H-4

Chip layout & micrograph

A 40-110 GHz High-Isolation CMOS Traveling-Wave T/R Switch

by Using Parallel Inductor

(14)

IMS2015

13

TU4H-4

Outline

 Motivation and introduction

 MMW CMOS T/R switch: design procedure

(in 90-nm CMOS)

 Simulation & measurement results

 Performance comparison

 Conclusion

(15)

IMS2015

14

TU4H-4

Simulation & measurement results: (1)

40 50 60 70 80 90 100 110 Frequency (GHz) -35 -30 -25 -20 -15 -10 -5 0 -R et u rn a n d in se rt io n l o ss ( d B ) Simu._Insertion loss Simu._Return loss Meas._Insertion loss Meas._Return loss 40 50 60 70 80 90 100 110 Frequency (GHz) -60 -50 -40 -30 -20 -10 0 - T x to R x is o la ti o n ( d B ) Simu. Meas.

Frequency range: 40 – 110 GHz

Simu.

Return loss: > 10 dB

Insertion loss: < 4 dB

Isolation > 21 dB

Meas.

Return loss: > 10 dB

Insertion loss: < 4 dB

Isolation > 20 dB

(56 dB @ 109 GHz)

(16)

IMS2015

15

TU4H-4

Simulation & measurement results: (2)

-10 -5 0 5 10 15 Input power (dBm) -7 -6 -5 -4 -3 -2 -I n se rt io n lo ss ( d B ) At 94 GHz Simu. Meas. -15 -10 -5 0 5 10 15 Input power (dBm) -60 -50 -40 -30 -20 -10 0 - T x to R x is o la ti o n ( d B ) 94 GHz Simu. Meas.

Frequency at 94 GHz

Simu.

IP

1dB

@ 94 GHz

= 12 dBm

Isolation = 40 dB @ 15 dBm

Meas.

IP

1dB

@ 94 GHz

= 10 dBm

Isolation = 34.2 @ 15 dBm

(17)

IMS2015

16

TU4H-4

Outline

 Motivation and introduction

 MMW CMOS T/R switch: design procedure

(in 90-nm CMOS)

 Simulation & measurement results

 Performance comparison

 Conclusion

(18)

IMS2015

17

TU4H-4

Performance comparison

A 40-110 GHz High-Isolation CMOS Traveling-Wave T/R Switch

by Using Parallel Inductor

Reference

MWCL 2007 [ 6 ] MWCL 2010 [ 7 ] MWCL 2012 [ 8 ] MWCL 2014 [ 9 ]

This work

Process

90-nm COMS 90-nm COMS 45-nm COMS SOI 0.13-m SiGe 90-nm CMOS

Switch Topology

SPDT

Design Approach

Traveling wave line integrated Transmission Double shunt Double shunt Traveling wave

Frequency range (GHz)

50 – 94 60 – 110 140 - 220 96 – 163 40–110 60–110

Return loss (dB)

> 10 > 15 > 10 > 10 > 10 > 10

Insertion loss (dB)

< 3.4 3 – 4 3-5 3.5 @ 94 GHz 2.6 - 3 < 4 < 4

Isolation (dB)

(30 @ 94 GHz)> 27 (27 @ 94 GHz)> 25 > 20 > 23.5 > 20 > 27 56 @ 109 GHz

Input P

1dB

(dBm)

@ 77 GHz 15 @ 75 GHz 10.5 --- 17 @ 94 GHz @ 94 GHz 10

Chip size / Core size

(19)

IMS2015

18

TU4H-4

Conclusion

 A 40-110 GHz High-Isolation CMOS Traveling-Wave T/R

Switch by Using Parallel Inductor is fabricated in 90-nm

CMOS technology.

Chip size / Core size: 0.27 / 0.11 mm

2

Measured insertion loss less than 4 dB @ 40-110 GHz and 3 dB @ 94 GHz

Measured Tx-Rx isolation better than 20 dB @ 40-110 GHz, 56 dB @ 109 GHz

 Wide bandwidth and high isolation can be achieved by

traveling-wave topology with parallel inductors.

The designed 40-110 GHz traveling-wave T/R switch has

(20)

IMS2015

19

TU4H-4

References

[1] Weapon detection [online]. Available: http://www.nist.gov/mml/mmsd/security_technologies/dietimage.cfm

[2] A. Arbabian, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45,

pp. 2667–2681, Dec. 2010.

[3] Breast cancer screening [online]. Available: http://www.telegraph.co.uk/women/womens-life/9642860/

Breast-cancer-screening-saves-lives-thats-no-lie.html

[4] A. Arbabian, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture

recognition,” IEEE J. Solid-State Circuits, vol. 48, pp. 1055–1071, App. 2010.

[5] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, and R.-B. Wu, “Millimeter-wave MMIC passive HEMT

switches using traveling-wave concept,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 8, pp. 1798–1808, Aug. 2004.

[6] S. F. Chao, H. Wang, C.-Y. Su, and J. G. J. Chern, “A 50 to 94-GHz CMOS SPDT switch using traveling-wave concept,”

IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 130–132, Feb. 2007

[7] R.-B. Lai, J.-J. Kuo, and H. Wang, “A 60–110 GHz transmission-line integrated SPDT switch in 90 nm CMOS

technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 85–87, Feb. 2010

[8] M. Uzunkol and G. M. Rebeiz, “140-220 GHz SPST and SPDT switches in 45 nm CMOS SOI,” IEEE Microw. Wireless

Compon. Lett., vol. 22, no. 8, pp. 412-414, Aug. 2012

[9] C. Ulusoy, et al., “A low-loss and high isolation D-Band SPDT switch utilizing deep-saturated SiGe HBTs ,” IEEE

Microw. Wireless Compon. Lett., vol. 24, no. 6, pp. 400-402, Jun. 2014.

[10] C. –S. Kuo, H. –C. Kuo, H. –R. Chuang, C. -Y Chen and T. –H. Huang “A High-Isolation 60GHz CMOS Transmit/Receive Switch,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2011, pp. 1–4.

[11] M. Uzunkol, and G. M. Rebeiz, “A low-loss 50–70 GHz SPDT switch in 90 nm CMOS,” IEEE J. Solid-State Circuits,

vol. 45, no. 10, pp. 2003–2007, Oct. 2010.

[12] F.-J. Huang, and K. O, “A 0.5-μm CMOS T/R switch for 900-MHz wireless applications,” IEEE J. Solid-State Circuits,

(21)

IMS2015

20

TU4H-4

Thank you for your

attention

(22)

IMS2015

21

TU4H-4

(23)

IMS2015

22

TU4H-4

40 50 60 70 80 90 100 110 Frequency (GHz) 50 55 60 65 70 In duc tor ( pH ) 10 15 20 25 Q

90-nm Transmission line model

Ansoft HFSS EM tools:

0 0.2 0.5 1 2 5 10 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 0 -2 0 -3 0 -40 -50 -60 -70 -80 -90 -10 0 -11 0 -12 0 -1 30 -1 40 -1 50 -1 60 -1 70

(24)

IMS2015

23

TU4H-4

l l on l on

C

j

Y

C

j

R

Y

C

j

R

Y

L

j

Z

3 2 1 1

,

2

1

1

,

Traveling-wave SPST structure analysis

SPST

switch off: (isolation)

ABCD matrix Analysis:

1

1

1

1

1

1

1

2

1

3

2

3

2

1

1

3

3

3

3

3

1

2

2

1

2

2

2

2

1

1

1

1

1

1

1

1

Z

Y

Z

Y

Y

Y

Y

Z

Z

Y

D

C

B

A

Z

Y

Y

Z

D

C

B

A

Z

Y

Y

Z

D

C

B

A

3

3

3

3

2

2

2

2

1

1

1

1

3

3

3

3

2

2

2

2

2

1

1

1

1

D

C

B

A

D

C

B

A

D

C

B

A

D

C

B

A

D

C

B

A

D

C

B

A

D

C

B

A

n

0 10 20 30 40 50 60 70 80 90 100 110 Frequency (GHz) -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -I so la ti o n ( d B ) 1-stage 2-stage 3-stage 4-stage Cl Ron 2Cl Ron 2Cl Ron Cl

for n=3

(25)

IMS2015

24

TU4H-4

Traveling-wave SPDT structure analysis [5]

effective bandwidth

:

1. Return loss

> 10 dB

2. Isolation

> 20 dB

(26)

IMS2015

25

TU4H-4

effective bandwidth

:

1. Return loss

> 10 dB

2. Isolation

> 20 dB

3. Insertion loss

< 4 dB

Traveling-wave SPDT structure analysis

40 50 60 70 80 90 100 110 Frequency (GHz) -50 -40 -30 -20 -10 0 -A n te n n a re tu rn lo ss

Single resonated switch

Resonated switch with traveling wave,n=1 Resonated switch with traveling wave,n=2 Resonated switch with traveling wave,n=3 Resonated switch with traveling wave,n=4

40 50 60 70 80 90 100 110 Frequency (GHz) -50 -40 -30 -20 -10 0 - O u tp u t re tu rn lo ss

Single resonated switch

Resonated switch with traveling wave,n=1 Resonated switch with traveling wave,n=2 Resonated switch with traveling wave,n=3 Resonated switch with traveling wave,n=4

Parallel inductor Tx Ant. Output matching Rx Output matching Input matching Vc Vc Vc1 Vc1 Vc Vc1 M2 M1 M3 M5 M6 M4

(27)

IMS2015

26

TU4H-4

effective bandwidth

:

1. Return loss

> 10 dB

2. Isolation

> 20 dB

3. Insertion loss

< 4 dB

Traveling-wave SPDT structure analysis

40 50 60 70 80 90 100 110 Frequency (GHz) -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -I n se rt io n lo ss

Single resonated switch

Resonated switch with traveling wave,n=1 Resonated switch with traveling wave,n=2 Resonated switch with traveling wave,n=3 Resonated switch with traveling wave,n=4

40 50 60 70 80 90 100 110 Frequency (GHz) -70 -60 -50 -40 -30 -20 -10 0 -I so la ti o n ( d B )

Single resonated switch

Resonated switch with traveling wave,n=1 Resonated switch with traveling wave,n=2 Resonated switch with traveling wave,n=3 Resonated switch with traveling wave,n=4

Parallel inductor Tx Ant. Output matching Rx Output matching Input matching Vc Vc Vc1 Vc1 Vc Vc1 M2 M1 M3 M5 M6 M4

(28)

IMS2015

27

TU4H-4

(29)

IMS2015

28

TU4H-4

Reviews of published works

Reported MMW SPDT switch:

 (a) Traveling-wave with λ/4 transformer [7];

(Chao et al, MWCL 2007, 50-94 GHz)

 (b) Series-shunt with leakage cancellation [10];

(Kuo et al, RFIC 2011, 57-64 GHz)

 (c) Single-shunt with λ/4 transformer [11];

(Uzunkol et al, JSSC 2010, 50-70 GHz)

(30)

IMS2015

29

TU4H-4

MMW CMOS T/R switch: design procedure

Body-floating technique [12]

The parameters will influent insertion loss:

R

B

, R

ON

&

C

T

2

2 2 2

0 2 0 0 0 2 2 2 0 2 21

2

1

2

2

1

Loss

Insertion

B T ON B ON T ON

R

C

ω

Z

Z

Z

R

R

Z

R

C

ω

Z

R

S

GB GS GD GB GS GD SB DB T C C C C C C C C C      

(31)

IMS2015

30

TU4H-4

MMW CMOS T/R switch: design procedure

 Body-floating technique [12]

 A

high resistor R

B

is connected to the body terminal of transistor and ground

 High impedance path R

D

+

R

B

insertion loss improvement

Transmit signal

Smaller leakage signal

RON

COFF

RD

RD RB

RB

Body grounded directly

Transmit signal Rx Ant Leakage signal RON COFF RD RD Body-floating technology Rx Ant 0 2 4 6 8 10 RB (kΩ) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 In se ri o n lo ss ( d B

) simu. NMOS with RB

Insertion loss v.s R

B

S

D

G

(32)

IMS2015

31

TU4H-4

Measurement setup: S-parameter

S-parameters measurement setup:

This setup can only measure

:

(

not included insertion loss and antenna return loss

)

1) Isolation

(small signal)

2) Tx. Rx return los

s

(33)

IMS2015

32

TU4H-4

Measurement setup: S-parameter

S-parameter measurement setup

(34)

IMS2015

33

TU4H-4

Measurement setup: IP

1dB

& insertion loss

 IP

1dB

, Insertion loss measurement setup

* different measurement setup from S-parameters.

For measuring switch high IP

1dB:

need power amplifier after SG

(35)

IMS2015

34

TU4H-4

Measurement setup: IP

1dB

& insertion loss

 IP

1dB

, Insertion loss measurement setup

(36)

IMS2015

35

TU4H-4

Measurement setup: IIP3

 IIP3 measurement setup:

* different measurement setup from S-parameters.

Two tone test:

need two signal generators.

The harmonic Mixer P

out, max

= -10 dBm (require the attenuator)

Ant Tx DC probe 67-GHz Signal Generator Multiplier Spectrum Analyzer 50Ω load 67-GHz Signal Generator W-band Harmonic Mixer (75 - 110 GHz) 50Ω Adjustable Attenuator OML Microwave Probe Station PA Combiner

Keep harmonic mixer from saturated

Rx

(37)

IMS2015

36

TU4H-4

Simulation & measurement results summary

40 – 110 GHz CMOS T/R Switch ( TSMC 90-nm GUTM CMOS)

Simulation results

Post-simu.

Measurement

Frequency range

40–110 GHz

40–110 GHz

Vc (high / low) (V)

1.2 / 0

1.2 / 0

Power consumption (mW)

0

0

Output return loss (dB)

> 10.3

> 10

Ant return loss (dB)

> 11.1

Could not be measured

Insertion loss (dB)

< 4

3.6 @ 94 GHz

4 @109 GHz

< 4

3 @ 94 GHz

Port-isolation (dB)

> 21 ( 40–110 GHz)

> 27( 60–110 GHz)

40 @ 94 GHz

47@ 109 GHz

> 21 ( 40–110 GHz)

> 27( 60–110 GHz)

36 @ 94GHz

56 @ 109 GHz

Input P

1dB

(dBm) @94 GHz

12

10

IIP3

(dBm) @94 GHz

23

20.2

Die size

0.27

0.27

參考文獻

相關文件

TRANSFER TEST SWITCH : NORMAL FUEL LEVEL TRANSMITTER: High Level FUEL PRESSURE SWITCH : Low Press TRANSFER PUMP SWITCH : ON. 敘述說明圖二中 Blocking

With the proposed model equations, accurate results can be obtained on a mapped grid using a standard method, such as the high-resolution wave- propagation algorithm for a

of the spin polarisation L. Bocher et al. submitted (2011).. Mapping plasmons and EM fields Mapping plasmons and EM fields.. New possibilities for studying the low

™ Ethernet Switch 每個 Port 必須 能模擬 CSMA/CD 的 Protocol. ™ Ethernet Switch 需將廣播或群 播轉送至其他 Port 上(除了發送 的

Abstract—We propose a multi-segment approximation method to design a CMOS current-mode hyperbolic tangent sigmoid function with high accuracy and wide input dynamic range.. The

Abstract - A 0.18 μm CMOS low noise amplifier using RC- feedback topology is proposed with optimized matching, gain, noise, linearity and area for UWB applications.. Good

According to frequency response, filters can be divided into: (1) low-pass filter, (2) high-pass filter, (3) band-pass filter and band-stop filter.. This paper only chooses

Due to low birth rate and setting up many new senior high schools and senior vocational schools, now the rate of entering a higher school for junior high school graduates has