• 沒有找到結果。

Effects of Catalyst Plasma Pre-Treatment on Surface Morphology and Field Emission Characteristics of Carbon Nanotubes... 葉國輝、李世鴻

N/A
N/A
Protected

Academic year: 2022

Share "Effects of Catalyst Plasma Pre-Treatment on Surface Morphology and Field Emission Characteristics of Carbon Nanotubes... 葉國輝、李世鴻"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

Effects of Catalyst Plasma Pre-Treatment on Surface Morphology and Field Emission Characteristics of Carbon Nanotubes...

葉國輝、李世鴻

E-mail: 9607638@mail.dyu.edu.tw

ABSTRACT

In this work, tetrafluoromethane (CF4) and nitrogen (N2) plasma pre-treatments were carried out on the catalyst nickel films in order to study their effects on the surface morphology and field emission characteristics of the synthesized carbon nanotubes (CNTs).

Carbon nanotubes were synthesized with a thermal chemical vapor deposition system. Methane (CH4) was the main source for carbon, and argon was used as the carrier gas. CNTs were synthesized from carbon atoms obtained from catalytic thermal decomposition of methane. Raman spectroscopy, scanning electron microscope (SEM), and energy dispersive spectrometer (EDS) were employed to study the properties of synthesized CNTs after plasma treatment. From our experimental data, it is found that as the plasma pretreatment duration was increased, the diameter of CNTs became smaller and the surface density of CNTs became higher, and their field emission characteristics were thus enhanced. We can see that after 4 minutes of CF4 plasma pretreatment, the emission current density of CNTs reached 1.67mA/cm2, but after 4 minutes of N2 plasma pretreatment, the emission current density was only 0.908mA/cm2. Therefore, it is evident that CF4 plasma pretreatment can have a more pronounced enhancement on the emission characteristics of CNTs than N2 plasma pretreatment can have. Keywords : carbon nanotubes (CNTs), field emission, thermal chemical vapor deposition (thermal CVD)

Keywords : rbon nanotubes (CNTs) ; field emission ; thermal chemical vapor deposition (thermal CVD) Table of Contents

目 錄 封面內頁 簽名頁 授權書....................iii 中文摘要...............

....iv 英文摘要...................v 誌謝.....................vi 目錄.....................vii 圖目錄....................x 表目錄..

..................xiv 第一章 簡介................. 1 1.1. 奈米碳管的歷史與 簡介.......... 1 1.2. 奈米碳管的特性............. 4 1.3. 奈米碳管的應用........

..... 7 1.4. 研究動機................ 8 第二章 催化劑電漿前處理文獻回顧....... 11 2.1. 氨氣對催化劑電漿前處理文獻....... 13 第三章 理論與研究方法............ 17 3.1. 電子場發 射理論............. 17 3.2. 奈米碳管的成長機制........... 20 3.2.1. 奈米碳管主要成長機制

......... 20 3.2.2. 催化劑在奈米碳管成長中扮演的角色... 22 3.2.3. 奈米碳管成長模式分類.......

.. 25 3.3. 奈米碳管的製程方法........... 27 3.4. 電漿蝕刻機制.............. 34 3.5. 實 驗儀器與實驗步驟........... 35 3.5.1. 實驗流程............... 35 3.5.2. 熱蒸鍍系統..

............ 36 3.5.3. 熱化學氣相沉積系統.......... 37 3.5.4. 電漿蝕刻系統........

..... 39 3.5.5. 掃描式電子顯微鏡系統......... 41 3.5.6. 能量散佈分析儀系統.......... 42 3.5.7. 拉曼光譜儀系統............ 44 3.5.8. 場發射量測裝置系統.......... 46 第四章 實驗結果 與討論............ 48 4.1. 不同時間CF4電漿前處理對奈米碳管成長之影響48 4.1.1. SEM(掃瞄式電子顯微 鏡)的分析..... 48 4.1.2. Raman(拉曼光譜)分析..........52 4.1.3. EDS(能量散佈分析儀)的分析....

...55 4.1.4. 電子場發射特性分析.......... 56 4.2. 不同時間N2電漿前處理對奈米碳管成長之影響 60 4.2.1.

SEM(掃瞄式電子顯微鏡)的分析......60 4.2.2. Raman(拉曼光譜)分析..........64 4.2.3. EDS(能量散佈 分析儀)的分析.......66 4.2.4. 電子場發射特性分析.......... 67 4.3. 不同電漿前處理對奈米碳管的研 究與討論.. 71 4.3.1. 不同電漿前處理SEM表面結構比較.....71 4.3.2. 不同電漿前處理拉曼比較........

72 4.3.3. 不同電漿前處理EDS比較.........73 4.3.4. 不同電漿前處理場發射特性比較..... 74 第五章 結論

................. 76 參考文獻...................78 REFERENCES

1. Kroto, H. W., Heath, J. R., O’Brian, S. C., Curl, R. F., & Smalley, R. E.(1985). C60: Buckminsterfullerene. Nature, Vol. 318 (6042), pp.

162-163. 2. Kratschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, Vol. 347, pp.

(2)

354-358. 3. Maiti, Brabec, C. J., Roland, C., & Bernholc, J. (1995). Theory of carbon nanotube growth. Phys. Rev. B, Nov 15; Vol. 52(20), pp.

14850-14858. 4. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, Vol. 354, Nov. 7, pp. 56-58. 5. Iijima, S., & Ichihashi, T.

(1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, Vol. 363, pp. 603-605. 6. Bethune, D. S., Kiang, C. H., deVries, M. S., Gorman, G., Saroy, R., Vazguez, J., & Beyers, R. (1993). Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, Vol. 363, pp.

605-607. 7. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., & Smalley, R. E. (1996). Crystalline ropes of metallic carbon nanotubes. Science, Vol. 273, pp. 483-487. 8.

Dresselhaus, M. S., Dresselhaus, G., & Saito, R. (1995). Physics of carbon nanotubes. Carbon, Vol. 33, pp. 883-891. 9. Peter J. F. Harris, (1999).

Carbon Nanotubes and Related Structure. Cambridge University Press, Chapter 4.2: Electronic properties of nanotube. pp. 16–54. 10.

Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. (1996) Fullerenes and Carbon Nanotubes, Academic,San Diego. 11. Charlier, J. C., & Issi, J. P.

(1998). Electronic structure and quantum transport in carbon nanotubes. Applied Physics A: Materials Science & Processing, Vol. 67, pp. 79-87.

12. Haus, M. D., Dresselhaus, G., Eklund, P., & Saito, R. (1998). Carbon nanotubes. Physics World, Vol. 11, pp. 33-38. 13. Mintmire, J. W. &

White, C. T. (1998). First-principles band structures of armchair nanotubes. Applied Physics A: Materials Science & Processing, Vol. 67, pp. 65-69.

14. K. Tohji, T. Goto, H. Takahashi, Y. Shinoda, N. Shimizu,B. Jeyadevan, I. Matsuoka, Y. Saito, A. Kasuya, T. Ohsuna, K. Hiraga, Y. Nishina, J. (1997) Phys. Chem. Vol.101, pp. 1974. 15. S. Bandow, A.M. Rao, K.A. Williams, A. Thess, R.E. Smalley,P.C. Eklund, J. (1997)Phys. Chem. B Vol.101 pp. 8839. 16. E. Dujardin, T.W. Ebbesen, A. Krishnan, M.M.J. Treacy, Adv.Mater. 10 (1998) pp. 1472. 17. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E.

Smalley, (1998) Appl. Phys. A Vol 67 pp.29. 18. K.B. Shelmov, R.O. Esenaliev, A.G. Rinzler, C.B. Huffman,R.E. Smalley, (1998)Chem. Phys.

Lett. Vol 282 pp. 429. 19. A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, M.J. Heben, Adv. Mater. 11 (1999) , pp.1354. 20. Z.

Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, (1999)Solid State Commun. 112 , pp.35. 21. I.W. Chiang, B.E. Brinson, R.E. Smalley, J.E. Margrave, R.H. Hauge, J. (2001)Phys. Chem. B 105, pp.1157. 22. J.M. Moon, K.H. An, Y.H. Lee, Y.S. Park, D.J. Bae, G.S. Park, J.

(2001)Phys. Chem. B 105, pp.5677. 23. S. Niyogi, H. Hu, M.A. Hamon, P. Bhowmik, B. Zhao, S.M. Rozenzhak, J. Chen, M.E. Itkis, M.S. Meier, R.C. Haddon, J. Am. Chem. Soc. 123 (2001) , pp.733. 24. A.R. Harutyunyan, B.K. Pradhan, J.P. Chang, G.G. Chen, P.C. Eklund, J. Phys. Chem.

B 106 (2002) , pp.8671. 25. M.T. Mart?’nez, M.A. Callejas, A.M. Benito, W.K. Maser, M. Cochet, J.M. Andre’s, J. Schreiber, O. Chauvet, J.L.G. Fierro, Chem. Commun. (2002); , pp.1000. 26. E. Va’zquez, V. Georgakilas, M. Prato, Chem. Commun. 2002; 230 Jo, S. H., Y. Tu, Z. P.

Huang, D. L. Carnahan, D.Z. Wang and Z. F. Ren (2003) Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Applied Physics Letters, 82(20), , pp.3520-3522. 27. Shelimov, K.B.; Esenaliev, R.O.; Rinzler, A.G.; Huffman, C. B.; Smalley, R.E.

Chem. Phys. Lett., 282, (1998)429. 28. Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima. Solid State Communications, Vol.112, (1999) , pp.35-37. 29. .Duesberg, G.S.; Burghard, M.; Muster, J.; Philipp, J.; Roth, S. Chem. Commun., 1998, (1998) , pp.435. 30. S. H. Jo, Y. Tu, Z. P.

Huang, D. L. Carnahan, D. Z. Wang, Z. F. Ren, Appl. Phys. Lett. 82 (2003) 3520. 31. Z. L. Wang, R. P. Gao, W.A. de Heer, P. Poncharal, Appl.

Phys. Lett. 80 (2002) 856. 32. J. M. Bonard, K. A. Dean, B. F. Coll, C. Klinke, Phys. Rev. Lett. 89 (2002) 197602. 33. H. Folwer and L. Nordheim , (1928) Proc. R. Soc. London, Ser A, Vol.119, pp.683 34. P.G. Collins and A.Zettl, (1997) Phys. Rev. B 55, pp.9391 35. S. Han and J. Ihm, Phys.

Rev. B, Vol.66, 241402 (2002); Changwook Kim, Bongsoo Kim, Seung Mi Lee, Chulsu Jo and Young Hee Lee, Phys. Rev. B, Vol.65, pp.418, 36.

L. Nilsson, O. Groening, C. Emmenegger, et al., Appl. Phys. Lett. 79 (2001) 1534. 37. Z.P. Huang, D.Z. Wang, J.G. Wen, M. Sennett, H. Gibson, Z.F. Ren, Appl. Phys. A: Mater. Sci. Process 74 (2002) 387. 38. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, et al., Appl. Phys. Lett. 79 (2001) 1534. 39. Z.F. Ren, Z.P. Huang, D.Z. Wang, et al., Appl. Phys. Lett. 75 (1999) 1086. 40. H. Murakami, M. Hirakawa, C. Tananka, H. Yamakawa, Appl. Phys. Lett. 76 (2000) 1776. 41. Y. Tu, Z.P. Huang, D.Z. Wang, J.G. Wen, Z.F. Ren, Appl. Phys. Lett. 80 (2002) 4018. 42. Z.F. Ren, Z.P.

Huang, J.W. Xu, P.N. Provencio, Science 282 (1998) 1105. 43. C.J. Lee, J. Park, S.Y. Kang, J.H. Lee, Chem. Phys. Lett. 323 (2000) 554.155 44.

M. Jung, K.Y. Eun, J.-K. Lee, Y.-J. Baik, K.-R. Lee and J.W. 45. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegel, et al., Science 282 (1998) 1105. 46. C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, et al., Chem. Phys. Lett. 312 (1999) 461. 47. M. Jung, K.Y.

Eun, J.K. Lee, Y.T. Baik, K.R. Lee, J.W. Park, al., Science 273 (1996) 483. 48. K.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, D.J. Kim, J. Eur.

Ceram. Soc.21 (2001) 2095. 49. G.S. Choi, Y.S. Cho, S.Y. Hong, J.B. Park, K.H. Son, D.J. Kima, J. Appl. Phys. 91 (2002) 3847. 50. M. Jung, K.Y.

Eun, Y.J. Baik, K.R. Lee, J.K. Shin, S.T. Kim, Thin Solid Films 398–399 (2001) 150. 51. C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, et al., Chem. Phys. Lett. 312 (1999) 461. 52. Jon g Hyung Choi , Tae Young Lee , Sun Hong Choi , Jae-Hee Han , Ji-Beom Yoo, Chong-Yun Park , Taewon Jung , Se Gi Yu , Whikun Yi , In-Taek Han , J.M. Kim. “Control of carbon nanotubes density through Ni nanoparticle formation using thermal and NH3 plasma treatment”, Diamond and Related Materials 12 (2003) 794–798 53. Jae-Hee Han , Chong Hyun Lee , Duk-Young Jung , Chul-Woong Yang , Ji-Beom Yoo *, Chong Yun Park , Ha Jin Kim , SeGi Yu , Whikun Yi , Gyeong Su Park , I.T. Han , N.S. Lee , J.M. Kim. “NH3 effect on the growth of carbon nanotubes on glass substrate in plasma enhanced chemical vapor deposition” Thin Solid Films 409 (2002) 120–125 54. Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., & Hayshi, T. (1993). Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chemical Physics Letters, Vol. 204, pp. 277-282. 55. Dai, H., Rinzer, A. G., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1996). Single-wall nanotubes produces by mental catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett., Vol. 260, pp. 471-475. 56. Lee, Y. H., Kim, S. G., & Tomanek, D. (1997). Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys. Rev. Lett., Vol. 78, pp. 2393-2396. 57. Endo, M., & Kroto, H. W. (1992). Formation of carbon nanofibers.

Journal of Physical Chemistry, Vol. 96, pp. 6491-6944. 58. Baker, R. T. K., & Harries, P. S. (1978). The formation of filamentous carbon.

(3)

Chemistry and Physics of Carbon, New York: Marcel Deckker, Vol. 14, pp. 83-165. 59. Baker, R. T. K., Braker, M. A., Harries, P. S., Feates, F.

S., & Waite, R. J. (1972). Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene. Journal of Catalysis, Vol. 26, pp. 51-62. 60. Oberlin, A., Ento, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, Vol. 32, pp. 335-349. 61. Baird, T., & Fryer, J. R. (1974). Carbon formation on iron and. nickel foils by hydrocarbon pyrolysis reactions at 700°C. Carbon, Vol. 12, pp. 591-602. 62. Oberlin, A., Ento, M., & Koyama, T. (1976). High resolution electron microscope observations of graphitized carbon fibers. Carbon, Vol. 14, pp. 133-157. 63. Journet, C. et al., (1998). Production of carbon nanotubes. Applied Physics, Vol.67, pp. 1-9. 64. Alan, M. et al., (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., Vol. 292, pp.

567-574. 65. Yacaman, M. J., Yoshida, M. M., Rendon, L., & Santiesteban, J. G. (1993). Catalytic growth of carbon. microtubules with fullerene structure. Appl. Phys. Lett., Vol. 62, pp. 202-204. 66. Baker, R. T. K., & Chludzinski, J. J. (1980). Filamentous carbon growth on nickel–iron surfaces—effect of various oxide additives. Journal of Catalysis, Vol. 64, pp. 464-478. 67. Baker, R. T. K., Harries, P. S., Thomas, R. B., & Waite, R. J. (1973). Formation of filamen-tous carbon from iron and chromium catalyzed decomposition of acetylene. Journal of Catalysis, Vol. 30, pp.

86-95. 68. Baker, R. T. K., & Waite, R. J. (1975). Formation of carbonaceous deposit from the platinum-iron catalyzed decomposition. Journal of Catalysis, Vol. 37, pp. 101-105. 69. Jung, M., Eun, K. Y., Lee, J. K., Baik, Y. J., Lee, K. R., & Park, J. W. (2001). Growth of carbon nanotubes by chemical vapor deposition. Diamond and Related Materials, Vol. 10, pp.1235-1240. 70. Xie, S., Li, W., Pan, Z., Chang, B., & Sun, L. (2000).

Self-assembly of shape-controlled nanocrystals and their in-situ thermodynamic properties. Materials Science and Engineering A, Vol. 286, pp.

11-15. 71. Chen, X. H., Feng, S. Q., Ding, Y., Peng, J. C., & Chen, Z. Z. (1999). The formation conditions of carbon nanotubes array based on FeNi alloy island films. Thin Solid Films, Vol. 339, pp. 6-9. 72. Lee, C. J., Park, J., Kang, S. Y., & Lee, J. H. (2000). Growth of well-aligned carbon nanotubes on a large area of Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition. Chemical Physics Letters, Vol. 323, pp. 554-559. 73. Terrones, M. et al., (1998). Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chemical Physics Letters, Vol. 285, pp. 299-305. 74. Liang, Q., Li, Q., Chen, D. L., Zhou, D. R., Zhang, B. L., & Yu, Z. L. (2000). Carbon nanotube prepared in the atmosphere of partial oxidation of methane. Chemical Journal of Chinese Universities-Chineses, Vol. 21(4), pp. 623-625. 75. Hernadi, K., Fonseca, A., Nagy, J. B., Siska, A., & Kiricsi, I. (2000). Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Applied Catalysis A: General, Vol. 199, pp. 245-255. 76. Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., & Wang, G. (1996). Large-scale synthesis of aligned carbon nanotubes. Science, Vol. 274, pp. 1701-1703. 77. Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., & Wang, G. (1999). Direct growth of aligned open carbon nanotubes by chemical vapor deposition.

Chemical Physics Letters, Vol. 299, pp. 97-102. 78. Li, A. P., Muller, F., Birner, A., Nielsch, K., & Gosele, U. (1998). Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., Vol. 84, pp. 6023-6026. 79. Masuda, H., Yamada, H., Satoh, M., & Asoh, H. (1997). Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett., Vol. 71, pp. 2770-2772. 80.

Masuda, H., & Satoh, M. (1996). Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys., part 2, Vol. 35, L. 126-129. 81. Nolan, P. E., Schabel, M. J., & Lynch, D. C. (1995). Hydrogen control of carbon deposit morphology. Carbon, Vol. 33, pp. 79-85. 82. Pinheiro, P., Schouler, M. C., Gadelle, P., Mermoux, M., & Dooryhee, E. (2000). Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts. Carbon, Vol. 38(10), pp. 1469-1479. 83.

Khassin, A. A., Yurieva, T. M., Zaikovskii, V. I., & Parmon, V. N. (1998). Effect of metallic cobalt particles size on occurrence of CO

disproportionation. Role of fluidized metallic cobalt-carbon solution in carbon nanotube formation. Reaction Kinetic and Catalysis Letter, Vol. 64, pp. 63-71. 84. Tsai, S. H., Chao, C. W., Lee, C. L., & Shin, H. C. (1999). Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis. Appl. Phys. Lett., Vol. 74, pp. 3462-3464. 85. Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P., & Provencio, P. N. (1998). Growth of highly-oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition.

Appl. Phys. Lett., Vol. 73, pp. 3845-3847. 86. Ren, Z. F., Huang, Z. P., Wang, D. Z., Wen, J. G., Xu, J. W., Wang, J. H., Calvet, L. E., Chen, J., Klemic, J. F., & Reed, M. A. (1999). Growth of a Single Freestanding Multiwall Carbon Nanotube on Each Nanonickel Dot. Appl. Phys. Lett., Vol.

75, pp. 1086-1088. 87. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. (1999). Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science, Vol. 283, pp. 512-514. 88. Kwon, Y. K., Lee, Y. H., Kim, S. G., Jund, P., Tomanek, D., & Smalley, R. E. (1997). Morphology and Stability of Growing Multiwall Carbon Nanotubes. Phys. Rev. Lett., Vol. 79, pp.

2065-2068. 89. Oh, D. H., & Lee, Y. H. (1998). Stability and cap formation mechanism of single-walled carbon nanotubes. Phys. Rev. B, Vol. 58, pp. 7407-7411. 90. Kuznetsov, V. L., Usoltseva, A. N., Chuvilin, A. L., Obraztsova, E. D. & Bonard, J. M. (2001). Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. Phys. Rev. B, Vol. 64, pp. 235401-1. 91.

Lieberman, M. A., and A. J. Lichtenberg, “Principles of plasma discharges and materials processing,” John Wiley & Sons Inc., 1994. 92. Xiao, H. (2001). “Introduction to semiconductor manufacturing technology,” Prentice Hall Inc.. 93. A. Maiti. C.J. Brabec and J.Bernholc:Phys. Rev. B 55 (1997) R6097 94. Jacoby, S. L. S., Kowalik, J. S., & Pizzo, J. T. (1972). Iterative methods for nonlinear optimization problems. Prentice Hall, Inc., Englewood Cliffs, New Jersey, ISBN 0–13–.508199–X, 79-83. 95. Fowler, R. H., & Nordheim, L. W. (1928). Electron emission in intense electric fields. Proceedings of Royal Society of London, 119, 173-181.

參考文獻

相關文件

Therefore, this study is focusing on designing the bicycle traffic safety Lesson Plan to enhance the bicycle riding safety of students.. Through the pre-teaching test and the

These results may the sample characteristics improved by plasma treatment which reduced defects of surface by fluorine atoms, providing the more stable conducting

The main goal of this research is to identify the characteristics of hyperkalemia ECG by studying the effects of potassium concentrations in blood on the

In this study, the Taguchi method was carried out by the TracePro software to find the initial parameters of the billboard.. Then, full factor experiment and regression analysis

This study focuses on modal characteristics of single stage planetary gear systems and their dynamic characteristics under variant wind types of extreme fluctuation excitations..

In short-term forecasting, it is better to apply Grey Prediction Model on Steer-By-Wire and Carbon NanoTube-Field Emission Displays; and to apply Holt exponential smoothing model

This research focuses on the analysis of the characteristics of the Supreme Court verdicts on project schedule disputes in order to pinpoint the main reason for delay

The effects of radius of the pulse laser and ratio of delay times on the temperature distributions were discussed in detail.A nondiemensional parameter B was defined as the ratio