• 沒有找到結果。

口咽吸入柴油引擎微粒在阿茲海默症三基因轉殖小鼠中對中樞神經系統毒性的影響

N/A
N/A
Protected

Academic year: 2022

Share "口咽吸入柴油引擎微粒在阿茲海默症三基因轉殖小鼠中對中樞神經系統毒性的影響"

Copied!
106
0
0

加載中.... (立即查看全文)

全文

(1)

Institute of Occupational Medicine and Industrial Hygiene College of Public Health

National Taiwan University Master Thesis

Effects of oropharyngeal aspiration to diesel exhaust particles on central nervous system toxicity

in 3xTg-AD mice

Chen-Huan Fu

(2)
(3)
(4)

TJC Lab

Royal

MB

108 7

(5)

(Alzheimer’s disease, AD)

(diesel exhaust particles, DEPs) C57BL/6

Tau

— (3xTg-AD mice)

(amyloid-beta, Aβ)

(amyloid plaque) Tau

(phosphorylated Tau protein) (Neurofibrillary Tangles, NFTs) 3xTg-AD

6-8 34 3xTg-AD

(6)

(Western Blot) (malondialdehyde, MDA) (Iba-

1) (LC3b) (Aβ42, t-Tau)

H&E

MDA (p<0.05)

(7)

Abstract

Air pollution has been known as a major health threat for decades. Many epidemiological and toxicological studies of air pollution have confirmed that ambient particulate matter can cause adverse effects on the central nervous system (CNS), including neuroinflammation, oxidative stress, autophagy dysfunction and contribute to neurodegenerative diseases, such as Alzheimer’s disease (AD).

In the modern city, the most important source of pollution is traffic-related air pollutants. Diesel exhaust particles (DEPs) emitted by diesel engine combustion is the most important component of near-road and urban air pollution. In our previous study, C57BL/6 mice were acutely exposed to DEPs and found that pro-inflammatory cytokines, lipid peroxidation, and tau tauopathies increased significantly in the brain. However, the mechanisms are still unclear. Therefore, the objective of this study was to investigate the central nervous system toxicity caused by DEPs in Alzheimer’s disease mouse model.

6 to 8-week-old 3xTg-AD female mice were exposed to 300µg of DEPs SRM 1650b by oropharyngeal aspiration (50 µg/time, 2 times/week and for 3 weeks). SRM 1650b was purchased from National Institute of Standards and Technology, and it represents particulate from the combustion of heavy-duty diesel engines. After the last exposure, all

(8)

examination.

The results showed that MDA concentration significantly increased in the hippocampus (p<0.05), but not in cerebral cortex and cerebellum. Expression of LC3b, Iba-1, Aβ42, and total tau protein was not significant between the control and the exposure group in 3 brain region. The DEPs exposure did not cause histopathological changes in the brain, but there was slight inflammation in the lungs.

In all, the data support that the hippocampus may be more sensitive to the oxidative stress from the exposure to DEPs. However, further studies should include the aged animals for prolonged period of time to elucidate the underlying mechanisms of DEPs induced neurotoxicity.

Keywords: diesel exhaust particulates, oropharyngeal aspiration, central nervous system toxicity, microglia activation, oxidative stress, autophagy

(9)

... 1

... 2

2.1 ... 2

2.1.1 ... 3

2.2 ... 4

2.2.1 ... 5

2.2.2 ... 7

2.2.3 ... 9

2.3 (Alzheimer's disease, AD) ... 11

2.3.1 ... 13

2.3.2 ... 14

2.3.3 ... 15

2.4 (3xTg-AD mice) ... 17

2.5 (Oropharyngeal Aspiration, OA) ... 19

... 20

3.1 ... 20

(10)

3.5.2 ... 24

3.5.3 MDA ... 25

3.5.4 LC-MS/MS ... 26

3.6 ... 28

3.6.1 ... 28

3.6.2 ... 29

3.6.3 ... 31

3.7 ... 32

3.8 ... 32

... 33

4.1 MDA ... 33

4.1.1 ... 33

4.1.2 MDA ... 33

4.2 ... 34

4.2.1 Iba-1 ... 34

4.2.2 LC3b ... 34

4.2.3 Aβ42 ... 34

4.2.4 t-Tau ... 34

4.3 ... 35

... 36

5.1 ... 36

5.2 3xTg-AD ... 39

5.3 ... 41

(11)

5.3.1 ... 41

5.3.2 ... 43

5.3.3 ... 45

5.3.4 ... 47

5.3.5 ... 48

... 49

... 50

(12)

1 ... 66

2 SRM1650b PAH (NIST 2013) ... 67

3 LC-MS/MS ... 69

4 HESI ... 69

5 SRM ... 69

6 ... 70

7 MDA ... 71

8 Iba-1 (Fold of control) ... 72

9 LC3b (Fold of control) ... 72

10 Aβ42 (Fold of control) ... 73

11 t-Tau (Fold of control) ... 73

12 ... 74

(13)

1 ... 75

2 MDA-DNPH ... 76

3 MDA ... 77

4 Iba-1 ... 78

5 Iba-1 ... 79

6 Iba-1 ... 80

7 LC3b ... 81

8 LC3b ... 82

9 LC3b ... 83

10 Aβ42 ... 84

11 Aβ42 ... 85

12 Aβ42 ... 86

13 t-Tau ... 87

14 t-Tau ... 88

15 t-Tau ... 89

16 ... 90

(14)

(International Agency for Research on Cancer ,

IARC) 2013 PM2.5

92%

PM2.5

Tau

3xTg-AD

1. MDA

2. LC3b

3. Iba-1

4. (amyloid-β, Aβ) Tau

(total Tau protein, t-Tau)

(15)

2.1

90% (Kurt, Zhang et al. 2016)

(Akimoto 2003)

(Akimoto 2003) (Craig, Brook et al. 2008)

(Cui, Huang et al. 2014) (Kurt, Zhang et al. 2016) (Kaufman, Adar et al. 2016)

(CALDERon-GARCIDUEnas, Reed et al. 2004, Calderón- Garcidueñas, Mora-Tiscareño et al. 2008, Mateen and Brook 2011)

(Dementia) (MCI) (Alzheimer’s disease)

(Parkinson’s disease) (Gatto, Henderson et al. 2014, Tonne, Elbaz et al. 2014, Zanobetti, Dominici et al. 2014, Tzivian, Dlugaj et al. 2016)

(16)

2.1.1

(Fagundes,

Fleck et al. 2015) (Blood–brain barrier, BBB)

(Heusinkveld, Wahle et al. 2016, Kreyling 2016)

100 (Calderón-Garcidueñas, Solt et al. 2008, Wang, Xiong et al. 2017)

(Cheng, Saffari et al. 2016)

(IL-1β, IL-6, TNF-α) (Wang, Xiong et al. 2017) (Chiu, Von Hehn et al. 2012)

(17)

2.2

(Hesterberg,

Long et al. 2012) 2012

(diesel engine exhaust, DEE) DEE

(Ris 2007)

(diesel exhaust particulates, DEPs) 30~500 nm

(aromatic hydrocarbons)

(Taxell and Santonen 2017)

(Suwannasual, Lucero et al. 2018)

(Chuang, Wu et al. 2018)

(18)

(Levesque, Surace et al. 2011)

( 1)

2.2.1

20

(superoxide anion, O2 ) (hydroxyl radical, OH) (hydrogen peroxide, H2O2) (reactive oxygen species, ROS)

(Cobley, Fiorello et al. 2018) ATP(adenosine triphosphate) (reactive nitrogen species, RNS)

ROS ROS

ROS

(oxidative stress) DNA

(Salim 2017)

(Borza, Muntean et al. 2013)

(Hulbert, Pamplona et al.

2007)

(Wang and Michaelis 2010)

(polyunsaturated

(19)

fatty acids, PUFAs) (Sultana,

Perluigi et al. 2006) PUFAs

(Anzai, Ogawa et al. 1999, Yehuda, Rabinovitz et al. 2002)

(Farooqui and Horrocks 1998) PUFAs

(malondialdehyde, MDA) 4- -2- (4-hydroxy-2-nonenal, HNE) (acrolein) MDA

(Giera, Lingeman et al. 2012)

(Block, Wu et al. 2004, van Berlo, Albrecht et al. 2010)

(Guerra, Vera-Aguilar et al. 2013)

MDA (Cole, Coburn et al. 2016)

(20)

2.2.2

5~12

(ramified) (activated,

amoeboid)

(Bolton, Smith et al. 2012)

M1 M2 M1

IL-1β, IL-6, IL-12, TNF-α NO

ROS (neurotrophic factors)

M2

IL-10, TGF-β (Cherry, Olschowka

et al. 2014)

(21)

(Block and Calderón- Garcidueñas 2009)

Iba-1(Ionized calcium-binding adaptor protein-1)

Iba-1

(Block, Wu et al. 2004)

Iba-1 (Bolton, Smith et al. 2012, Win-Shwe, Fujimaki

et al. 2012, Cole, Coburn et al. 2016) (Cole, Coburn et al. 2016)

(Levesque, Taetzsch et al.

2011, Bolton, Marinero et al. 2017)

Iba-1

(22)

2.2.3

(Cuervo 2004)

(Mizushima, Yamamoto et al. 2004) (Scherz-Shouval, Shvets et al. 2007)

(Mazure and Pouysségur 2010) (Song, Zhao et al. 2013)

(Liu, Gao et al. 2010) (Macroautophagy)

(Microautophagy) (Chaperone-mediated

autophagy, CMA) (macroautophagy)

(phagophore)

(elongation) (autophagosome)

(lysosome) (autolysosome)

(Zare-shahabadi, Masliah et al. 2015, Pellacani and Costa 2018)

(Lee, Giordano et al.

2012, Tung, Wang et al. 2012)

(autophagy-related (ATG) proteins) LC3(microtubule-associated protein 1-light chain 3)

(Bernard and

Klionsky 2014) LC3 LC3a, LC3b, LC3c

(23)

LC3a LC3b LC3b

(Koukourakis, Kalamida et al. 2015)

LC3 (Pro LC3) LC3-I

LC3-I (phosphatidylethanolamine, PE) LC3-II

LC3-II

LC3II/LC3I

(Orrenius, Kaminskyy et al. 2013)

(Numan, Brown et al. 2015)

(Bai, Chuang et al. 2018)

LC3-II/LC3-I

LC3b

(24)

2.3

(Alzheimer's disease, AD)

(Förstl and Kurz 1999)

(amyloid precursor protein, APP) (β-secretase, γ-secretase)

(amyloid-β, Aβ) 42 Aβ(Aβ42)

(Selkoe 2001) Aβ

(monomers) (oligomers) (fibrils)

(amyloid-β plaques)(Carvajal and Inestrosa 2011, Selkoe 2011) (microtubule) Tau

(neurofibrillary tangles, NFTs)

(Duyckaerts, Potier et al.

2008)

(Braak and Braak 1991, Nelson, Alafuzoff et al. 2012)

Aβ (Zhao and Zhao 2013,

Heneka, Carson et al. 2015)

42 (Levesque, Surace et al. 2011)

PM2.540 (Bhatt, Puig et al. 2015)

(25)

(Hullmann, Albrecht et al. 2017) Tau

(1 mg/m3)

Tau(phosphorylated tau, p-Tau) (Levesque, Surace et al. 2011)

p-Tau 3 4

(Iqbal, Liu et al. 2010) tau(t-Tau)

(Liazoghli, Perreault et al. 2005, Chesser, Pritchard et al. 2013) t-Tau p-Tau

(26)

2.3.1

(Butterfield, Lange et al. 2010) (Ruipérez, Darios et al. 2010)

(Reuter, Gupta et al. 2010)

(Lee, Giordano et al. 2012) (Scherz-Shouval, Shvets et al. 2007, Mizushima, Levine et al. 2008) Aβ (Behl 1997, Abramov and Duchen 2005, Shelat, Chalimoniuk et al. 2008) Tau

(Mondragón-Rodríguez, Perry et al. 2013, Alavi Naini and Soussi-

Yanicostas 2015) (Sultana, Perluigi

et al. 2013)

(Montine, Reich et al. 1998, Calingasan, Uchida et al. 1999)

Aβ (Smith,

Hirai et al. 1998, Praticò, Uryu et al. 2001) (Liu, Smith et al. 2005)

(27)

2.3.2

M2

M1 M1

M2 (Wang, Tan et al. 2015)

(Olmos-Alonso, Schetters et al. 2016, Martin, Boucher et al. 2017)

Aβ Tau

Aβ 50% (Kamphuis, Kooijman et al.

2016) Aβ

(Neniskyte, Neher et al. 2011)

(Yoshiyama, Higuchi et al. 2007) Tau (Gorlovoy, Larionov

et al. 2009) Tau

Tau Tau

(Asai, Ikezu et al. 2015)

(28)

2.3.3

(Nixon, Wegiel et al. 2005, Nixon and Cataldo 2006)

(Wolfe, Lee et al. 2013, Chuang, Wu et al. 2018)

(Maday, Wallace et al.

2012) (Ashrafi, Schlehe et al. 2014)

(autophagic vacuoles, AV) (Li, Liu et al. 2017)

(Sanchez-Varo, Trujillo-Estrada et al. 2012)

Aβ Tau

(Mizushima 2005, Nixon, Wegiel et al. 2005) Tau

(Hamano, Gendron et al. 2008, Congdon, Wu

et al. 2012) tau

p-Tau (Inoue, Rispoli et al. 2012)

Tau Tau

(Li, Liu et al. 2017)

Beclin-1

(Boland, Kumar et al. 2008, Lipinski, Zheng et al. 2010)

(29)

(Mizushima, Levine et al. 2008, Moreno, Villar et al. 2018)

(30)

2.4

(3xTg-AD mice)

(3xTg-AD mice) C57BL/6

APPSwedish TauP301L PSEN1 M146V (Oddo,

Caccamo et al. 2003) 3xTg-AD 3 Aβ

6 Aβ Tau

18 26 Tau (Billings,

Oddo et al. 2005, Mastrangelo and Bowers 2008)

(Villamil-Ortiz and Cardona-Gomez 2015)

3xTg-AD

(Giménez-Llort, Arranz et al. 2008, Sterniczuk, Antle et al. 2010, Stover, Campbell et al. 2015)

LC3

Beclin-1 (Villamil-Ortiz and Cardona-Gomez 2015)

(GFAP) (Iba-1)

(Chen, Liang et al. 2013)

Tau

Aβ (Huber, Yee et al. 2018) (8-arm radial maze, RAM) 3xTg-AD

(31)

2 (Stevens and Brown 2015) (Morris water maze, MWM)

6 (Billings, Green et al. 2007, McKee, Carreras et al.

2008, Stover, Campbell et al. 2015) (novel

object recognition task, NOR) 6

(Blanchard, Wanka et al. 2010, Chen, Liang et al. 2013) 3xTg-AD

(32)

2.5

(Oropharyngeal Aspiration, OA)

(whole-body inhalation) (nose-only inhalation)

(intratracheal instillation) (nose instillation) (oropharyngeal aspiration)

(phosphate-buffered saline,

PBS) (Shang and Sun 2018)

60~80%

32%

24 57%

80% (Foster, Walters et al. 2001)

(De Vooght, Vanoirbeek et al. 2009)

(Lakatos, Burgess et al. 2006)

(Kinaret, Ilves et al. 2017)

(33)

3.1

3xTg-AD

(In vitro fertilization, IVF) IVF 3xTg-AD

3xTg-AD 9

22±2℃ 55±10% 12-12

(Institutional Animal Care and Use Committee,

IACUC) ( 20160545)

(34)

3.2

6-8 3xTg-AD

DEP

(PBS) 24

1

CO2

80 ℃

MDA Western blot CO2

(Heparin) (Lactated ringer's B injection)

Bouin 10%

(35)

3.3

(National Institute of Standards and Technology, NIST, USA) Standard Reference Material®

1650b SRM1650b 200

0.18 µm

108 m2/g DEP (Phosphate

buffered saline, PBS) DEP PBS

SRM 1650b DEP 2 mg/mL PBS

620nm (Bengalli, Zerboni et al. 2019) PAH

2 PAH 202.1 ng/mg phenanthrene fluoranthene

pyrene 2.011 ng/µg

(Bengalli, Zerboni et al. 2019)

DEP PBS 1 µg/µL

parafilm 20 ℃ DEP

(Jiang, Oberdörster et al.

2009) 50 µL DEP

50 µL PBS

(36)

3.4

4 % (isoflurane)

isoflurane

50 µL

(37)

3.5

—MDA

DNA

(malondialdehyde, MDA) (Kesavulu, Rao et al. 2001) LC-MS/MS MDA

3.5.1 MDA DNPH

2 µL TEP(1,1,3,3 tetraethoxypropane) 8 mL

1mM MDA stocking solution 100 µL MDA stocking solution 5 mL

1% 2 20nmol/ml MDA working

solution

0.016 g DNPH(2,4-Dinitrophenylhydrazine, C6H3(NO2)2NHNH2) ( 33%) 12 mL 2 M

25 ℃ 2 5 mM pH0.09 DNPH

MDA working solution DNPH 3.5.2

(38)

(Acetonitrile, ACN)

2, 1, 0.5, 0.25, 0.125, 0.0625 nmol/mL 25 µL DNPH

25 ℃ 10

R2 0.995

(Matrix matched calibration curve, MCC)

8 mg 6 mg 6 mg 20 mg

MDA MDA

2, 1, 0.5, 0.25, 0.125, 0.0625, 0 nmol/mL 25 µL

DNPH 25 ℃ 10

R2 0.995

(%)=MCC #SCC

SCC ×100%

±15%

±15%

3.5.3 MDA

Tukozkan (Tukozkan, Erdamar et al. 2006)

10 mg 250 µL

1.15% (Potassium chloride, KCl)

100µL 6M (Sodium hydroxide, NaOH)

MDA 60 ℃ 45

(39)

250 µL 100%ACN

12200 rpm 10

MDA 25 µL

DNPH 25 µL 25 ℃ 10

LC-MS/MS MDA-DNPH

3.5.4 LC-MS/MS

(Liquid chromatography-tandem mass spectrometry, LC-MS/MS) MDA-DNPH

(Autosampler, San Joes, CA, USA) (Thermo Scientific Accela 1250 quaternary pump)

4.6 mm 15 cm 5 µm Syncronis C18 (Thermo Fisher Scientific

Inc., Waltham, WA, USA) 0.1% (Acetic acid, AA) ACN

0.1% AA 25 µL 15

0 50%

300 µL/min 5 95% 300 µL/min

11 50% 300 µL/min 11.10

50% 500 µL/min 14.10 50%

(40)

(Capillary temperature) 200 ℃ (Vaporizer temperature) 200 ℃ (Aux gas pressure) 5 arb (Sheath gas pressure) 35 psi

SRM HESI 4 5 Xcalibur 2.2(Thermo Fisher Scientific

Inc.)

(41)

3.6

Iba-1

LC3b t-Tau Aβ42

(running) (transfer) (blocking)

3.6.1

15 mg 60 µL

(Protease inhibitor cocktail, EDTA-Free, 100X in DMSO, MCE) (Phosphatase inhibitor Cocktail I, 100X in DMSO, MCE) (Ethylenediaminetetraacetic acid, EDTA, 0.5M, pH8.0)

RIPA (Radioimmunoprecipitation assay buffer, RIPA Buffer, PH7.4, 2X

(42)

(Bovine Serum Albumin Standards, BSA, Thermo Fisher Scientific) 1, 0.5, 0.25, 0.125, 0.0625, 0 mg/mL

20 µL 980 µL Bradford (Bio-rad

Protein Assay Dye Reagent Concentrate, BIO-RAD)

1 µL 999 µL Bradford

150 µL 96

(BioTek™ Epoch™ Microplate Spectrophotometer)

595 nm R2 0.995

(T-Pro

Laemmli SDS sample Reagent reducing 4X) 95 ℃ 5

4 µg/µL −20 ℃

3.6.2

(Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE)

SDS-PAGE t-Tau(55 kDa) 10% LC3b(14, 16

kDa) Iba1(17 kDa) Aβ42 oligomer(37 kDa) 15% 4%

β-actin internal control

30% Acrylamide (30% Acrylamide/Bis Solution, 37.5:1, BIO- RAD) 1.5 M Tris-HCl (Resolving Buffer, 1.5 M Tris-HCl pH8.8, BIO-RAD) 10% SDS

(43)

(10% (w/v) sodium dodecyl sulfate (SDS) solution, BIO-RAD) 10% APS (Ammonium persulfate solution) TEMED (Tetramethylethylenediamine)

75%

10 Well SDS-PAGE

well (Prestained Protein Ladders)

5 µL Well 20 µg

running buffer 60 V 30

100 V 120

0.45 0.2 µm (Polyvinylidene fluoride

membranes, PVDF transfer membrane) 100%

PVDF PVDF

PVDF

20%(v/v) transfer buffer 100V 60

0.1% Tween-20

TBS(tris-buffered saline) ( TBS-T) 5%

(blocking)

(44)

actin 1:10000 TBS-T 1:1000 TBS-T TBS-T

90 Rabbit IgG antibody (HRP)(GTX213110-01,

GeneTex) Mouse IgG antibody (HRP)(GTX213111-01, GeneTex) 1:10000

TBS-T TBS-T PVDF

ECL(Clarity Western ECL Substrate, BIO-RAD) (UVP BioSpectrum 810 Imaging System)

t-Tau β-actin

t-Tau β-actin t-Tau

(RapidStrip Western Blot Stripping Buffer, Omics Bio)

20 TBS-T

TBS-T ECL β-actin

3.6.3

ImageJ (National Institutes of Health, Bethesda,

MD, USA) β-actin

LC3b LC3b-II/ LC3b-I

(45)

3.7

- (hematoxylin and eosin stain, H&E stain)

3.8

SAS 9.4

Wilcoxon rank sum test

0.05 ±

(46)

4.1

MDA

MDA

4.1.1

6 (SCC) (MCC)

R2 0.995 −4.83%

±15% (SCC)

MDA 4.1.2 MDA

MDA-DNPH (Chromatogram) 2 (Retention time)

10.02 MDA

(p=0.0051) (p=0.1282) (p=0.0927)

7 3

(47)

4.2

internal control LC3b LC3b-II/

LC3b-I

4.2.1 Iba-1

Iba-1 4 5 6

( p=0.4712 p=0.0927

p=0.2980) 8

4.2.2 LC3b

LC3b-II/LC3b-I LC3b 7

8 9 (

p=0.2298 p=0.4712 p=0.2298) 9

4.2.3 42

42 10 11 12

( p=0.0927 p=0.9362

(48)

4.3

(Shackelford, Long et al.

2002) (slight)

(minimal)

12 16 17 18 19

(49)

24

MDA Iba-1 LC3b Aβ42

Tau

MDA

5.1

(50)

15-30 nm

300 2000 µg/m3

SRM 2975 SRM 1650 SRM 2975

SRM 1650

DEP

SRM 2975 81.69 ng/mg 9454 ng/µg

SRM 1650b SRM 2975 2~3 (202.1 ng/mg)

(2011 ng/µg)(Bengalli, Zerboni et al. 2019)

SRM 2975 SRM 1650b ROS RNS

(Bonvallot, Baeza-Squiban et al. 2001, Totlandsdal, Herseth et al. 2012, Totlandsdal, Låg et al. 2015) PAH

SRM 1650b

PBS

(51)

PBS

SRM 1650b

(52)

5.2

3xTg-AD

6-8

C57BL/6 C57BL/6

BALB/c Sprague Dawley

Maja Hullmann 5XFAD

0.95 mg/m3

42 (Hullmann, Albrecht et al. 2017)

3xTg-AD

3xTg-AD

C57BL/6

6 12 18

3xTg-AD

6 3xTg-AD

(Villamil-Ortiz and Cardona-Gomez 2015) 3xTg-AD

(53)

3xTg-AD 2

(Belfiore, Rodin et al. 2019) 3xTg-AD

3xTg-AD 12

3xTg-AD

744 450 3xTg-AD

(Rae and Brown 2015)

(54)

5.3 5.3.1

MDA HNE MDA

MDA MDA

Cole C57BL/6

250-300 µg/m3 6 MDA

(Cole, Coburn et al. 2016)

MDA C57BL/6

MDA (2-

thiobarbituric acid reacting substances test, TBARS assay)

(Thiobarbituric acid, TBA)

MDA MDA-TBA (Spectrophotometric

assay)

TBA MDA-TBA

(Meagher and FitzGerald 2000) TBARS

MDA DNPH

high-performance liquid chromatography (HPLC)

(55)

MDA(Cordis, Das et al. 1998, Pilz, Meineke et al. 2000)

TBA DNPH MDA TBA

(Ceconi, Cargnoni et al. 1991, Pilz, Meineke et al. 2000, Tukozkan,

Erdamar et al. 2006) HPLC-MS/MS DNPH MDA

MDA-DNPH

(

Dideuterated MDA, D2-MDA) MDA (Mendonça, Gning et al.

2017)

(56)

5.3.2

Iba-1

Iba-1

IL-1α, IL- 1β, TNFα, IL-6

DEPs Iba-1

50 µg 100 µg

150 µg 300 µg IL-1β, TNFα, IL-6

50 µg

M1 M2

M1 IL-1β,

IL-6, IL-12, TNF-α

M1 M2

(57)

M1 M2

M2 M1 (Jimenez, Baglietto-Vargas et al. 2008) Iba-1

M1 CD36, CD14, CD11c, MHC-II

M1 iNOS, TNFα, NADPH

MHC-II

(IHC) Iba-1 CD68

(58)

5.3.3

LC3b

(lipopolysaccharide, LPS)

(François, Terro et al. 2014)

LC3

LC3 16 kDa LC3-I 14

kDa LC3-II LC3b-1 LC3b-11

(Mizushima 2004)

LC3-II/LC3-I LC3 LC3-II

LC3

(autophagic flux) (Klionsky,

Abdelmohsen et al. 2016) LC3

(59)

Beclin-1 p62

Western blot LC3-II LC3-I LC3-II LC3-I

LC3 LC3-

I LC3-II

LC3-II(Chu, Plowey et al. 2009) LC3-I LC3-II SDS

LC3-I LC3-II

(Mizushima and Yoshimori 2007) LC3-I

LC3-II ( tubulin β-actin)

LC3 (Klionsky, Abdelmohsen et al. 2016, Yoshii and Mizushima 2017)

(60)

5.3.4

42 Aβ42 (monomers)

(oligomers) (fibrils) (plaques)

Aβ Aβ (Walsh, Klyubin et al.

2002, Kayed, Head et al. 2003) Aβ42

Tau (p-tau)

Tau (Liazoghli, Perreault et al. 2005)

Tau (Chesser, Pritchard et al. 2013) Tau

Tau Tau

Aβ Tau

Aβ Tau

1000µg/m3

42 Tau

5XFAD

Aβ C57BL6

t-Tau p-Tau 3xTg-AD

(61)

5.3.5

H&E

( 2016, 2017, 2018)

(Kim, Kabir et al.

2015)

(Levesque, Surace et al. 2011)

(Hartz, Bauer et al. 2008, Levesque,

Taetzsch et al. 2011) (Kim, Lee et al.

2016)

(62)

Aβ Tau 3xTg-AD

C57BL/6

12 3xTg-AD

24

(Bovine Serum Albumin, BSA) 20 (Tween-20)

Tau

(Immunohistochemistry, IHC) (Congo Red)

(63)

1. Abramov, A. Y. and M. R. Duchen (2005). "The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides." Philosophical Transactions of the Royal Society B: Biological Sciences 360(1464): 2309-2314.

2. Akimoto, H. (2003). "Global air quality and pollution." Science 302(5651): 1716- 1719.

3. Alavi Naini, S. M. and N. Soussi-Yanicostas (2015). "Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies?"

Oxidative medicine and cellular longevity 2015.

4. Anzai, K., K. Ogawa, Y. Goto, Y. Senzaki, T. Ozawa and H. Yamamoto (1999).

"Oxidation-dependent changes in the stability and permeability of lipid bilayers."

Antioxidants & redox signaling 1(3): 339-347.

5. Asai, H., S. Ikezu, S. Tsunoda, M. Medalla, J. Luebke, T. Haydar, B. Wolozin, O.

Butovsky, S. Kügler and T. Ikezu (2015). "Depletion of microglia and inhibition of exosome synthesis halt tau propagation." Nature neuroscience 18(11): 1584.

6. Ashrafi, G., J. S. Schlehe, M. J. LaVoie and T. L. Schwarz (2014). "Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin." J Cell Biol 206(5): 655-670.

7. Bai, K.-J., K.-J. Chuang, S.-M. Wu, L.-T. Chang, T.-Y. Chang, K.-F. Ho and H.-C.

Chuang (2018). "Effects of diesel exhaust particles on the expression of tau and autophagy proteins in human neuroblastoma cells." Environmental toxicology and pharmacology 62: 54-59.

8. Behl, C. (1997). "Amyloid β-protein toxicity and oxidative stress in Alzheimer’s disease." Cell and tissue research 290(3): 471-480.

9. Belfiore, R., A. Rodin, E. Ferreira, R. Velazquez, C. Branca, A. Caccamo and S.

(64)

study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain." PLoS One 10(5): e0127102.

13. Billings, L. M., K. N. Green, J. L. McGaugh and F. M. LaFerla (2007). "Learning decreases Aβ* 56 and tau pathology and ameliorates behavioral decline in 3xTg-AD mice." Journal of Neuroscience 27(4): 751-761.

14. Billings, L. M., S. Oddo, K. N. Green, J. L. McGaugh and F. M. LaFerla (2005).

"Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice." Neuron 45(5): 675-688.

15. Blanchard, J., L. Wanka, Y.-C. Tung, M. del Carmen Cárdenas-Aguayo, F. M.

LaFerla, K. Iqbal and I. Grundke-Iqbal (2010). "Pharmacologic reversal of neurogenic and neuroplastic abnormalities and cognitive impairments without affecting Aβ and tau pathologies in 3xTg-AD mice." Acta neuropathologica 120(5):

605-621.

16. Block, M., X. Wu, Z. Pei, G. Li, T. Wang, L. Qin, B. Wilson, J. Yang, J. Hong and B. Veronesi (2004). "Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase."

The FASEB Journal 18(13): 1618-1620.

17. Block, M. L. and L. Calderón-Garcidueñas (2009). "Air pollution: mechanisms of neuroinflammation and CNS disease." Trends in neurosciences 32(9): 506-516.

18. Boland, B., A. Kumar, S. Lee, F. M. Platt, J. Wegiel, W. H. Yu and R. A. Nixon (2008). "Autophagy induction and autophagosome clearance in neurons:

relationship to autophagic pathology in Alzheimer's disease." Journal of Neuroscience 28(27): 6926-6937.

19. Bolton, J. L., S. Marinero, T. Hassanzadeh, D. Natesan, D. Le, C. Belliveau, S.

Mason, R. L. Auten and S. D. Bilbo (2017). "Gestational exposure to air pollution alters cortical volume, microglial morphology, and microglia-neuron interactions in a sex-specific manner." Frontiers in synaptic neuroscience 9: 10.

20. Bolton, J. L., S. H. Smith, N. C. Huff, M. I. Gilmour, W. M. Foster, R. L. Auten and S. D. Bilbo (2012). "Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner." The FASEB Journal 26(11): 4743-4754.

21. Bonvallot, V., A. Baeza-Squiban, A. Baulig, S. Brulant, S. Boland, F. Muzeau, R.

Barouki and F. Marano (2001). "Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce

(65)

cytochrome p450 1A1 expression." American journal of respiratory cell and molecular biology 25(4): 515-521.

22. Borza, C., D. Muntean, C. Dehelean, G. Săvoiu, C. Şerban, G. Simu, M. Andoni, M.

Butur and S. Drăgan (2013). Oxidative stress and lipid peroxidation–a lipid metabolism dysfunction. Lipid metabolism, IntechOpen.

23. Braak, H. and E. Braak (1991). "Neuropathological stageing of Alzheimer-related changes." Acta neuropathologica 82(4): 239-259.

24. Butterfield, D. A., M. L. B. Lange and R. Sultana (2010). "Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's disease." Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1801(8): 924-929.

25. Calderón-Garcidueñas, L., A. C. Solt, C. Henríquez-Roldán, R. Torres-Jardón, B.

Nuse, L. Herritt, R. Villarreal-Calderón, N. Osnaya, I. Stone and R. García (2008).

"Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults." Toxicologic pathology 36(2): 289-310.

26. Calderón-Garcidueñas, L., A. Mora-Tiscareño, E. Ontiveros, G. Gómez-Garza, G.

Barragán-Mejía, J. Broadway, S. Chapman, G. Valencia-Salazar, V. Jewells and R.

R. Maronpot (2008). "Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs." Brain and cognition 68(2): 117-127.

27. CALDERon-GARCIDUEnas, L., W. Reed, R. R. Maronpot, C. Henriquez-Roldán, R. Delgado-Chavez, A. CALDERon-GARCIDUEnas, I. Dragustinovis, M. Franco- Lira, M. Aragon-Flores and A. C. Solt (2004). "Brain inflammation and Alzheimer's- like pathology in individuals exposed to severe air pollution." Toxicologic pathology 32(6): 650-658.

(66)

ischemia and reperfusion injury." American Journal of Physiology-Heart and Circulatory Physiology 260(4): H1057-H1061.

31. Chen, Y., Z. Liang, J. Blanchard, C.-L. Dai, S. Sun, M. H. Lee, I. Grundke-Iqbal, K.

Iqbal, F. Liu and C.-X. Gong (2013). "A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse)." Molecular neurobiology 47(2): 711-725.

32. Cheng, H., A. Saffari, C. Sioutas, H. J. Forman, T. E. Morgan and C. E. Finch (2016).

"Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain."

Environmental health perspectives 124(10): 1537-1546.

33. Cherry, J. D., J. A. Olschowka and M. K. O’Banion (2014). "Neuroinflammation and M2 microglia: the good, the bad, and the inflamed." Journal of neuroinflammation 11(1): 98.

34. Chesser, A., S. Pritchard and G. V. Johnson (2013). "Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease." Frontiers in neurology 4: 122.

35. Chiu, I. M., C. A. Von Hehn and C. J. Woolf (2012). "Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology." Nature neuroscience 15(8): 1063.

36. Chu, C. T., E. D. Plowey, R. K. Dagda, R. W. Hickey, S. J. Cherra III and R. S. Clark (2009). "Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models." Methods in enzymology 453: 217-249.

37. Chuang, H.-C., D. Wu and J.-H. Kang (2018). "Particulate air pollution and neurological diseases: The role of tauopathies." Environmental Disease 3(1): 4.

38. Cobley, J. N., M. L. Fiorello and D. M. Bailey (2018). "13 reasons why the brain is susceptible to oxidative stress." Redox biology 15: 490-503.

39. Cole, T. B., J. Coburn, K. Dao, P. Roqué, Y.-C. Chang, V. Kalia, T. R. Guilarte, J.

Dziedzic and L. G. Costa (2016). "Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain."

Toxicology 374: 1-9.

40. Congdon, E. E., J. W. Wu, N. Myeku, Y. H. Figueroa, M. Herman, P. S. Marinec, J.

E. Gestwicki, C. A. Dickey, W. H. Yu and K. E. Duff (2012). "Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo." Autophagy 8(4): 609-622.

(67)

41. Cordis, G. A., D. K. Das and W. Riedel (1998). "High-performance liquid chromatographic peak identification of 2, 4-dinitrophenylhydrazine derivatives of lipid peroxidation aldehydes by photodiode array detection." Journal of Chromatography A 798(1-2): 117-123.

42. Costa, L. G., T. B. Cole, J. Coburn, Y.-C. Chang, K. Dao and P. J. Roqué (2017).

"Neurotoxicity of traffic-related air pollution." Neurotoxicology 59: 133-139.

43. Craig, L., J. R. Brook, Q. Chiotti, B. Croes, S. Gower, A. Hedley, D. Krewski, A.

Krupnick, M. Krzyzanowski and M. D. Moran (2008). "Air pollution and public health: a guidance document for risk managers." Journal of Toxicology and Environmental Health, Part A 71(9-10): 588-698.

44. Cuervo, A. M. (2004). "Autophagy: in sickness and in health." Trends in cell biology 14(2): 70-77.

45. Cui, P., Y. Huang, J. Han, F. Song and K. Chen (2014). "Ambient particulate matter and lung cancer incidence and mortality: a meta-analysis of prospective studies."

The European Journal of Public Health 25(2): 324-329.

46. De Vooght, V., J. A. Vanoirbeek, S. Haenen, E. Verbeken, B. Nemery and P. H. Hoet (2009). "Oropharyngeal aspiration: an alternative route for challenging in a mouse model of chemical-induced asthma." Toxicology 259(1-2): 84-89.

47. Duyckaerts, C., M.-C. Potier and B. Delatour (2008). "Alzheimer disease models and human neuropathology: similarities and differences." Acta neuropathologica 115(1): 5-38.

48. Förstl, H. and A. Kurz (1999). "Clinical features of Alzheimer’s disease." European archives of psychiatry and clinical neuroscience 249(6): 288-290.

49. Fagundes, L. S., A. d. S. Fleck, A. C. Zanchi, P. H. N. Saldiva and C. R. Rhoden (2015). "Direct contact with particulate matter increases oxidative stress in different brain structures." Inhalation toxicology 27(10): 462-467.

(68)

system during lipopolysaccharide-induced inflammatory stress in mice." Molecular brain 7(1): 56.

53. Gatto, N. M., V. W. Henderson, H. N. Hodis, J. A. S. John, F. Lurmann, J.-C. Chen and W. J. Mack (2014). "Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles." Neurotoxicology 40: 1-7.

54. Gerlofs-Nijland, M. E., D. van Berlo, F. R. Cassee, R. P. Schins, K. Wang and A.

Campbell (2010). "Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain." Particle and fibre toxicology 7(1): 12.

55. Giera, M., H. Lingeman and W. M. Niessen (2012). "Recent advancements in the LC-and GC-based analysis of malondialdehyde (MDA): a brief overview."

Chromatographia 75(9-10): 433-440.

56. Giménez-Llort, L., L. Arranz, I. Maté and M. De la Fuente (2008). "Gender-specific neuroimmunoendocrine aging in a triple-transgenic 3× Tg-AD mouse model for Alzheimer’s disease and its relation with longevity." Neuroimmunomodulation 15(4-6): 331-343.

57. Gorlovoy, P., S. Larionov, T. T. H. Pham and H. Neumann (2009). "Accumulation of tau induced in neurites by microglial proinflammatory mediators." The FASEB Journal 23(8): 2502-2513.

58. Guerra, R., E. Vera-Aguilar, M. Uribe-Ramirez, G. Gookin, J. Camacho, A. Osornio- Vargas, V. Mugica-Alvarez, R. Angulo-Olais, A. Campbell and J. Froines (2013).

"Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum." Toxicology letters 222(2): 146-154.

59. Hamano, T., T. F. Gendron, E. Causevic, S. H. Yen, W. L. Lin, C. Isidoro, M. DeTure and L. w. Ko (2008). "Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression." European Journal of Neuroscience 27(5): 1119-1130.

60. Hartz, A. M., B. r. Bauer, M. L. Block, J.-S. Hong and D. S. Miller (2008). "Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P- glycoprotein up-regulation at the blood-brain barrier." The FASEB Journal 22(8):

2723-2733.

61. Heneka, M. T., M. J. Carson, J. El Khoury, G. E. Landreth, F. Brosseron, D. L.

Feinstein, A. H. Jacobs, T. Wyss-Coray, J. Vitorica and R. M. Ransohoff (2015).

(69)

"Neuroinflammation in Alzheimer's disease." The Lancet Neurology 14(4): 388-405.

62. Hesterberg, T. W., C. M. Long, W. B. Bunn, C. A. Lapin, R. O. McClellan and P. A.

Valberg (2012). "Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk." Inhalation toxicology 24(sup1): 1- 45.

63. Heusinkveld, H. J., T. Wahle, A. Campbell, R. H. Westerink, L. Tran, H. Johnston, V. Stone, F. R. Cassee and R. P. Schins (2016). "Neurodegenerative and neurological disorders by small inhaled particles." Neurotoxicology 56: 94-106.

64. Huber, C. M., C. Yee, T. May, A. Dhanala and C. S. Mitchell (2018). "Cognitive decline in preclinical Alzheimer’s disease: amyloid-beta versus tauopathy." Journal of Alzheimer's Disease 61(1): 265-281.

65. Hulbert, A., R. Pamplona, R. Buffenstein and W. Buttemer (2007). "Life and death:

metabolic rate, membrane composition, and life span of animals." Physiological reviews 87(4): 1175-1213.

66. Hullmann, M., C. Albrecht, D. van Berlo, M. E. Gerlofs-Nijland, T. Wahle, A. W.

Boots, J. Krutmann, F. R. Cassee, T. A. Bayer and R. P. Schins (2017). "Diesel engine exhaust accelerates plaque formation in a mouse model of Alzheimer’s disease." Particle and fibre toxicology 14(1): 35.

67. Inoue, K., J. Rispoli, H. Kaphzan, E. Klann, E. I. Chen, J. Kim, M. Komatsu and A.

Abeliovich (2012). "Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway." Molecular neurodegeneration 7(1): 48.

68. Iqbal, K., F. Liu, C.-X. Gong and I. Grundke-Iqbal (2010). "Tau in Alzheimer disease and related tauopathies." Current Alzheimer Research 7(8): 656-664.

69. Jiang, J., G. Oberdörster and P. Biswas (2009). "Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological

(70)

amyloid plaques in a mouse model for Alzheimer's disease." Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1862(10): 1847-1860.

72. Kaufman, J. D., S. D. Adar, R. G. Barr, M. Budoff, G. L. Burke, C. L. Curl, M. L.

Daviglus, A. V. D. Roux, A. J. Gassett and D. R. Jacobs Jr (2016). "Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study." The Lancet 388(10045): 696-704.

73. Kayed, R., E. Head, J. L. Thompson, T. M. McIntire, S. C. Milton, C. W. Cotman and C. G. Glabe (2003). "Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis." Science 300(5618): 486-489.

74. Kesavulu, M., B. K. Rao, R. Giri, J. Vijaya, G. Subramanyam and C. Apparao (2001).

"Lipid peroxidation and antioxidant enzyme status in Type 2 diabetics with coronary heart disease." Diabetes research and clinical practice 53(1): 33-39.

75. Kim, B.-G., P.-H. Lee, S.-H. Lee, Y.-E. Kim, M.-Y. Shin, Y. Kang, S.-H. Bae, M.-J.

Kim, T. Rhim and C.-S. Park (2016). "Long-term effects of diesel exhaust particles on airway inflammation and remodeling in a mouse model." Allergy, asthma &

immunology research 8(3): 246-256.

76. Kim, K.-H., E. Kabir and S. Kabir (2015). "A review on the human health impact of airborne particulate matter." Environment international 74: 136-143.

77. Kinaret, P., M. Ilves, V. Fortino, E. Rydman, P. Karisola, A. Lähde, J. Koivisto, J.

Jokiniemi, H. Wolff and K. Savolainen (2017). "Inhalation and oropharyngeal aspiration exposure to rod-like carbon nanotubes induce similar airway inflammation and biological responses in mouse lungs." ACS nano 11(1): 291-303.

78. Klionsky, D. J., K. Abdelmohsen, A. Abe, M. J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C. M. Adams, P. D. Adams and K. Adeli (2016). "Guidelines for the use and interpretation of assays for monitoring autophagy." Autophagy 12(1):

1-222.

79. Koukourakis, M. I., D. Kalamida, A. Giatromanolaki, C. E. Zois, E. Sivridis, S.

Pouliliou, A. Mitrakas, K. C. Gatter and A. L. Harris (2015). "Autophagosome proteins LC3A, LC3B and LC3C have distinct subcellular distribution kinetics and expression in cancer cell lines." PLoS One 10(9): e0137675.

80. Kreyling, W. G. (2016). "Discovery of unique and ENM—specific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats." Toxicology

(71)

and applied pharmacology 299: 41-46.

81. Kurt, O. K., J. Zhang and K. E. Pinkerton (2016). "Pulmonary health effects of air pollution." Current opinion in pulmonary medicine 22(2): 138.

82. Lakatos, H. F., H. A. Burgess, T. H. Thatcher, M. R. Redonnet, E. Hernady, J. P.

Williams and P. J. Sime (2006). "Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation." Experimental lung research 32(5): 181-199.

83. Lee, J., S. Giordano and J. Zhang (2012). "Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling." Biochemical Journal 441(2): 523-540.

84. Levesque, S., M. J. Surace, J. McDonald and M. L. Block (2011). "Air pollution &

the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease." Journal of neuroinflammation 8(1): 105.

85. Levesque, S., T. Taetzsch, M. E. Lull, U. Kodavanti, K. Stadler, A. Wagner, J. A.

Johnson, L. Duke, P. Kodavanti and M. J. Surace (2011). "Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity." Environmental health perspectives 119(8): 1149-1155.

86. Li, Q., Y. Liu and M. Sun (2017). "Autophagy and Alzheimer’s disease." Cellular and molecular neurobiology 37(3): 377-388.

87. Liazoghli, D., S. Perreault, K. D. Micheva, M. Desjardins and N. Leclerc (2005).

"Fragmentation of the Golgi apparatus induced by the overexpression of wild-type and mutant human tau forms in neurons." The American journal of pathology 166(5):

1499-1514.

88. Lipinski, M. M., B. Zheng, T. Lu, Z. Yan, B. F. Py, A. Ng, R. J. Xavier, C. Li, B. A.

Yankner and C. R. Scherzer (2010). "Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease."

(72)

distally and mature during transport toward the cell soma in primary neurons." J Cell Biol 196(4): 407-417.

92. Martin, E., C. Boucher, B. Fontaine and C. Delarasse (2017). "Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer's disease models: effects of aging and amyloid pathology." Aging cell 16(1): 27-38.

93. Mastrangelo, M. A. and W. J. Bowers (2008). "Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice." BMC neuroscience 9(1): 81.

94. Mateen, F. J. and R. D. Brook (2011). "Air pollution as an emerging global risk factor for stroke." Jama 305(12): 1240-1241.

95. Mazure, N. M. and J. Pouysségur (2010). "Hypoxia-induced autophagy: cell death or cell survival?" Current opinion in cell biology 22(2): 177-180.

96. McKee, A. C., I. Carreras, L. Hossain, H. Ryu, W. L. Klein, S. Oddo, F. M. LaFerla, B. G. Jenkins, N. W. Kowall and A. Dedeoglu (2008). "Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits in Alzheimer mice." Brain research 1207: 225-236.

97. Meagher, E. A. and G. A. FitzGerald (2000). "Indices of lipid peroxidation in vivo:

strengths and limitations." Free Radical Biology and Medicine 28(12): 1745-1750.

98. Mendonça, R., O. Gning, C. Di Cesaré, L. Lachat, N. C. Bennett, F. Helfenstein and G. Glauser (2017). "Sensitive and selective quantification of free and total malondialdehyde in plasma using UHPLC-HRMS." Journal of lipid research 58(9):

1924-1931.

99. Mizushima, N. (2004). "Methods for monitoring autophagy." The international journal of biochemistry & cell biology 36(12): 2491-2502.

100. Mizushima, N. (2005). "Aβ generation in autophagic vacuoles." J Cell Biol 171(1):

15-17.

101. Mizushima, N., B. Levine, A. M. Cuervo and D. J. Klionsky (2008). "Autophagy fights disease through cellular self-digestion." nature 451(7182): 1069.

102. Mizushima, N., A. Yamamoto, M. Matsui, T. Yoshimori and Y. Ohsumi (2004). "In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker." Molecular biology of the cell 15(3): 1101-1111.

103. Mizushima, N. and T. Yoshimori (2007). "How to interpret LC3 immunoblotting."

Autophagy 3(6): 542-545.

(73)

104. Mondragón-Rodríguez, S., G. Perry, X. Zhu, P. I. Moreira, M. C. Acevedo-Aquino and S. Williams (2013). "Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer’s disease." Oxidative medicine and cellular longevity 2013.

105. Montine, K. S., E. Reich, M. D. Neely, K. R. Sidell, S. J. Olson, W. R. Markesbery and T. J. Montine (1998). "Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype." Journal of Neuropathology & Experimental Neurology 57(5): 415-425.

106. Moreno, M. L., V. M. Villar, S. Mérida, F. Bosch Morell and M. Miranda (2018).

"Autophagy dysfunction and oxidative stress, two related mechanisms implicated in retinitis pigmentosa." Frontiers in physiology 9: 1008.

107. Nelson, P. T., I. Alafuzoff, E. H. Bigio, C. Bouras, H. Braak, N. J. Cairns, R. J.

Castellani, B. J. Crain, P. Davies and K. D. Tredici (2012). "Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature."

Journal of Neuropathology & Experimental Neurology 71(5): 362-381.

108. Neniskyte, U., J. J. Neher and G. C. Brown (2011). "Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia."

Journal of Biological Chemistry 286(46): 39904-39913.

109. NIST (2013). SRM 1650b Diesel Particulate Matter, US Department of Commerce Gaithersburg, MD.

110. Nixon, R. A. and A. M. Cataldo (2006). "Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease." Journal of Alzheimer's Disease 9(s3):

277-289.

111. Nixon, R. A., J. Wegiel, A. Kumar, W. H. Yu, C. Peterhoff, A. Cataldo and A. M.

Cuervo (2005). "Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study." Journal of Neuropathology & Experimental

(74)

114. Olmos-Alonso, A., S. T. Schetters, S. Sri, K. Askew, R. Mancuso, M. Vargas- Caballero, C. Holscher, V. H. Perry and D. Gomez-Nicola (2016). "Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology." Brain 139(3): 891-907.

115. Orrenius, S., V. O. Kaminskyy and B. Zhivotovsky (2013). "Autophagy in Toxicology: Cause or Consequence?" Annual Review of Pharmacology and Toxicology 53(1): 275-297.

116. Pellacani, C. and L. Costa (2018). "Role of autophagy in environmental neurotoxicity." Environmental pollution 235: 791-805.

117. Pilz, J., I. Meineke and C. H. Gleiter (2000). "Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2, 4- dinitrophenylhydrazine derivative." Journal of Chromatography B: Biomedical Sciences and Applications 742(2): 315-325.

118. Praticò, D., K. Uryu, S. Leight, J. Q. Trojanoswki and V. M.-Y. Lee (2001).

"Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis." Journal of Neuroscience 21(12): 4183-4187.

119. Rae, E. A. and R. E. Brown (2015). "The problem of genotype and sex differences in life expectancy in transgenic AD mice." Neuroscience & Biobehavioral Reviews 57: 238-251.

120. Reuter, S., S. C. Gupta, M. M. Chaturvedi and B. B. Aggarwal (2010). "Oxidative stress, inflammation, and cancer: how are they linked?" Free Radical Biology and Medicine 49(11): 1603-1616.

121. Ris, C. (2007). "US EPA health assessment for diesel engine exhaust: a review."

Inhalation toxicology 19(sup1): 229-239.

122. Ruipérez, V., F. Darios and B. Davletov (2010). "Alpha-synuclein, lipids and Parkinson’s disease." Progress in lipid research 49(4): 420-428.

123. Salim, S. (2017). "Oxidative stress and the central nervous system." Journal of Pharmacology and Experimental Therapeutics 360(1): 201-205.

124. Sanchez-Varo, R., L. Trujillo-Estrada, E. Sanchez-Mejias, M. Torres, D. Baglietto- Vargas, I. Moreno-Gonzalez, V. De Castro, S. Jimenez, D. Ruano and M. Vizuete (2012). "Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus." Acta neuropathologica 123(1): 53-70.

125. Scherz-Shouval, R., E. Shvets, E. Fass, H. Shorer, L. Gil and Z. Elazar (2007).

(75)

"Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4." The EMBO journal 26(7): 1749-1760.

126. Selkoe, D. J. (2001). "Alzheimer's disease: genes, proteins, and therapy."

Physiological reviews 81(2): 741-766.

127. Selkoe, D. J. (2011). "Resolving controversies on the path to Alzheimer's therapeutics." Nature medicine 17(9): 1060.

128. Shackelford, C., G. Long, J. Wolf, C. Okerberg and R. Herbert (2002). "Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies."

Toxicologic pathology 30(1): 93-96.

129. Shang, Y. and Q. Sun (2018). "Particulate air pollution: Major research methods and applications in animal models." Environmental Disease 3(3): 57.

130. Shelat, P. B., M. Chalimoniuk, J. H. Wang, J. B. Strosznajder, J. C. Lee, A. Y. Sun, A. Simonyi and G. Y. Sun (2008). "Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons." Journal of neurochemistry 106(1): 45-55.

131. Smith, M. A., K. Hirai, K. Hsiao, M. A. Pappolla, P. L. Harris, S. L. Siedlak, M.

Tabaton and G. Perry (1998). "Amyloid-β deposition in Alzheimer transgenic mice is associated with oxidative stress." Journal of neurochemistry 70(5): 2212-2215.

132. Song, Z., D. Zhao and L. Yang (2013). "Molecular mechanisms of neurodegeneration mediated by dysfunctional subcellular organelles in transmissible spongiform encephalopathies." Acta Biochim Biophys Sin 45(6): 452-464.

133. Sterniczuk, R., M. C. Antle, F. M. LaFerla and R. H. Dyck (2010). "Characterization of the 3xTg-AD mouse model of Alzheimer's disease: part 2. Behavioral and cognitive changes." Brain research 1348: 149-155.

134. Stevens, L. M. and R. E. Brown (2015). "Reference and working memory deficits in the 3xTg-AD mouse between 2 and 15-months of age: A cross-sectional study."

(76)

137. Sultana, R., M. Perluigi and D. A. Butterfield (2013). "Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain." Free Radical Biology and Medicine 62: 157-169.

138. Suwannasual, U., J. Lucero, J. D. McDonald and A. K. Lund (2018). "Exposure to traffic-generated air pollutants mediates alterations in brain microvascular integrity in wildtype mice on a high-fat diet." Environmental research 160: 449-461.

139. Taxell, P. and T. Santonen (2017). "Diesel engine exhaust: basis for occupational exposure limit value." Toxicological Sciences 158(2): 243-251.

140. Tonne, C., A. Elbaz, S. Beevers and A. Singh-Manoux (2014). "Traffic-related air pollution in relation to cognitive function in older adults." Epidemiology (Cambridge, Mass.) 25(5): 674.

141. Totlandsdal, A. I., J. I. Herseth, A. K. Bølling, A. Kubátová, A. Braun, R. E. Cochran, M. Refsnes, J. Øvrevik and M. Låg (2012). "Differential effects of the particle core and organic extract of diesel exhaust particles." Toxicology letters 208(3): 262-268.

142. Totlandsdal, A. I., M. Låg, E. Lilleaas, F. Cassee and P. Schwarze (2015).

"Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content." Environmental toxicology 30(2): 188-196.

143. Tukozkan, N., H. Erdamar and I. Seven (2006). "Measurement of total malondialdehyde in plasma and tissues by high-performance liquid chromatography and thiobarbituric acid assay." Firat Tip Dergisi 11(2): 88-92.

144. Tung, Y.-T., B.-J. Wang, M.-K. Hu, W.-M. Hsu, H. Lee, W.-P. Huang and Y.-F. Liao (2012). "Autophagy: a double-edged sword in Alzheimer’s disease." Journal of biosciences 37(1): 157-165.

145. Tzivian, L., M. Dlugaj, A. Winkler, G. Weinmayr, F. Hennig, K. B. Fuks, M.

Vossoughi, T. Schikowski, C. Weimar and R. Erbel (2016). "Long-term air pollution and traffic noise exposures and mild cognitive impairment in older adults: a cross- sectional analysis of the Heinz Nixdorf recall study." Environmental health perspectives 124(9): 1361-1368.

146. van Berlo, D., C. Albrecht, A. M. Knaapen, F. R. Cassee, M. E. Gerlofs-Nijland, I.

M. Kooter, N. Palomero-Gallagher, H.-J. Bidmon, F.-J. van Schooten and J.

Krutmann (2010). "Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain." Archives of toxicology 84(7): 553-562.

147. Villamil-Ortiz, J. G. and G. P. Cardona-Gomez (2015). "Comparative analysis of

(77)

autophagy and tauopathy related markers in cerebral ischemia and Alzheimer’s disease animal models." Frontiers in aging neuroscience 7: 84.

148. Walsh, D., I. Klyubin, J. Fadeeva, M. Rowan and D. Selkoe (2002). Amyloid-β oligomers: their production, toxicity and therapeutic inhibition, Portland Press Limited.

149. Wang, W.-Y., M.-S. Tan, J.-T. Yu and L. Tan (2015). "Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease." Annals of translational medicine 3(10).

150. Wang, X. and E. K. Michaelis (2010). "Selective neuronal vulnerability to oxidative stress in the brain." Frontiers in aging neuroscience 2: 12.

151. Wang, Y., L. Xiong and M. Tang (2017). "Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease." Journal of Applied Toxicology 37(6): 644-667.

152. Win-Shwe, T.-T., H. Fujimaki, Y. Fujitani and S. Hirano (2012). "Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust." Toxicology and applied pharmacology 262(3): 355-362.

153. Wolfe, D. M., J. h. Lee, A. Kumar, S. Lee, S. J. Orenstein and R. A. Nixon (2013).

"Autophagy failure in A lzheimer's disease and the role of defective lysosomal acidification." European Journal of Neuroscience 37(12): 1949-1961.

154. Yehuda, S., S. Rabinovitz, R. L. Carasso and D. I. Mostofsky (2002). "The role of polyunsaturated fatty acids in restoring the aging neuronal membrane."

Neurobiology of aging 23(5): 843-853.

155. Yoshii, S. R. and N. Mizushima (2017). "Monitoring and measuring autophagy."

International journal of molecular sciences 18(9): 1865.

156. Yoshiyama, Y., M. Higuchi, B. Zhang, S.-M. Huang, N. Iwata, T. C. Saido, J. Maeda, T. Suhara, J. Q. Trojanowski and V. M.-Y. Lee (2007). "Synapse loss and microglial

(78)

159. Zhao, Y. and B. Zhao (2013). "Oxidative stress and the pathogenesis of Alzheimer's disease." Oxidative medicine and cellular longevity 2013.

160. (2016). " ."

: 1-99.

161. (2018). "

." : 1-90.

162. (2017). " ."

(2017 ): 1-79.

(79)

1

, 2018 , 2017 , 2016

C57BL/6 C57BL/6 C57BL/6

DEPs (SRM1650b) DEPs (SRM2975) DEPs (SRM2975)

(OA) (IT) (IT)

50ug/ 2 / 150ug/ 1 /

50ug/ 1 /

150ug/ 1 /

IL-6

(80)

2 SRM1650b PAH (NIST 2013)

PAH Mass Fraction(a)

(mg/kg) Phenanthrene(b,c,d,e,f,g,h,i,j,k) 65.6 ± 3.6 1-Methylphenanthrene(b,c,d,e,k,l,m) 32.1 ± 1.4 2-Methylphenanthrene(b,c,d,e,k,l,m) 72.3 ± 1.2 3-Methylphenanthrene(b,c,d,e,k,l,m) 56.7 ± 1.9 9-Methylphenanthrene(b,c,d,e,k,l,m) 36.6 ± 1.6

Fluoranthene(b,c,d,e,f,g,h,i,j,k)

48.1 ± 1.1(n) Pyrene(b,c,d,e,f,g,h,i,j,k) 44.1 ± 1.2 Benzo[ghi]fluoranthene(c,e,f,g,h,i,j,k) 11.1 ± 0.7 Benzo[c]phenanthrene(b,c,d,e,f,g,h,i,k) 2.65 ± 0.24

Benz[a]anthracene(b,c,d,e,f,g,h,i,j,k) 6.45 ± 0.39

Chrysene(b,d,g,o) 13.4 ± 0.6

Triphenylene(b,d,g,o) 9.49 ± 0.63

Benzo[a]fluoranthene(b,c,d,e,f,h,k) 0.384 ± 0.023 Benzo[b]fluoranthene(c,e,f,g,h,i) 6.77 ± 0.92

Benzo[j]fluoranthene(c,e,f,h) 3.24 ± 0.50(n) Benzo[k]fluoranthene(b,c,d,e,f,g,h,i,j,k)

2.30 ± 0.18(n) Benzo[e]pyrene(b,c,d,e,f,g,h,i,j,k) 6.36 ± 0.37 Benzo[a]pyrene(b,c,d,e,f,g,h,i,j,k) 1.25 ± 0.12

Perylene(c,d,e,k) 0.167 ± 0.019(n)

Indeno[1,2,3-cd]pyrene(b,c,d,e,f,g,h,i,j,k,o) 4.48 ± 0.21 Benzo[ghi]perylene(b,c,d,e,f,g,h,i,j,k,o) 6.04 ± 0.30 Dibenz[a,c]anthracene(c,e,f,g,h,i) 0.439 ± 0.048

Dibenz[a,h]anthracene(c,e,g,i) 0.365 ± 0.082 Dibenz[a,j]anthracene(c,e,g,i) 0.387 ± 0.068(n) Benzo[b]chrysene(b,c,d,e,f,g,h,i,k)

0.301 ± 0.019(n) Picene(b,c,d,e,f,g,h,i,k)

0.506 ± 0.058(n)

(a) The certified mass fraction values, unless otherwise footnoted, are weighted means of the mass fractions from multiple analytical methods. The uncertainty listed with each value is an expanded uncertainty about the mean with coverage factor, k = 2, calculated by combining within method variances with a between method variance following the ISO/JCGM Guide.

(b) GC/MS (Ia) on a proprietary relatively nonpolar phase after PFE at 100 °C and 13.8 MPa with toluene.

(81)

(d) GC/MS (IIa) on a proprietary relatively nonpolar phase after PFE at 200 °C and 13.8 MPa with toluene.

(e) GC/MS (IIb) on 50 % phenyl-substituted methylpolysiloxane phase same extract as GC/MS (IIa).

(f) GC/MS (IIIa) on 50 % phenyl-substituted methylpolysiloxane phase after PFE at 100 °C and 13.8 MPa with DCM. (g) GC/MS (IIIb) on dimethyl 50 % polysiloxane liquid crystalline stationary phase with same extract as GC/MS (IIIa). (h) GC/MS (IVa) on 50

% phenyl-substituted methylpolysiloxane phase after PFE at 200 °C and 13.8 MPa with DCM. (i) GC/MS (IVb) on dimethyl 50 % polysiloxane liquid crystalline stationary phase with same extract as GC/MS (IVa). (j) GC/MS (Environment Canada) on a proprietary relatively nonpolar phase.

(k) GC/MS (VIII) on non-polar extra low bleed proprietary phase after PFE with toluene at 100 °C with 13.8 MPa; 100 °C with 20.7 MPa; 200 °C with 13.8 MPa; and 200 °C with 20.7 MPa.

(l) GC/MS (Va) on 50 % phenyl-substituted methylpolysiloxane phase after PFE at 100 °C and 13.8 MPa with DCM.

(m) GC/MS (VIa) on 50 % phenyl-substituted methylpolysiloxane phase after PFE at 200 °C and 13.8 MPa with DCM.

(n) The certified value is a weighted mean of average mass fractions, with one average from each of two or more analytical methods. The expanded uncertainty is the half width of a symmetric 95 % parametric bootstrap confidence interval which is consistent with the ISO/JCGM Guide with an effective coverage factor, k, equals 2.

(o) GC/MS (VII) on 50 % phenyl-substituted methylpolysiloxane phase after PFE at 100 °C with DCM.

(82)

3 LC-MS/MS Time

(min)

Mobile phase A (%) 0.1% AA in ACN

Mobile phase B (%) 0.1% AA in H2O

Flow rate (µL/min)

0.00 50 50 300

1.00 50 50 300

5.00 95 5 300

10.50 95 5 300

11.00 50 50 300

11.10 50 50 500

14.00 50 50 500

14.10 50 50 300

15.00 50 50 300

4 HESI

Device Value

Spray voltage (V) 3000

Vaporizer temperature (℃) 200

Sheath gas pressure (psi) 35

Auxiliary gas pressure (arb) 5

Capillary temperature (℃) 200

5 SRM

Analyte Precursor ion (m/z)

Product ion (m/z)

Collison Energy (V)

Tube Lens (V)

MDA-DNPH [M+H]+235.0 116.2 32 46

131.2 28 46

(83)

6

Analyte Standard calibration curve r2 Matrix matched calibration curve r2 Matrix effect (%)

MDA-DNPH y=5884086x+39606 r2=0.9991 y=5599679x+1185836 r2=0.9972 -4.83 %

(84)

7 MDA

Brain region Control (nmol/mL) Mean ± SE(Median)

Exposure (nmol/mL)

Mean ± SE (Median) p-value Cerebral cortex

0.013 ± 0.002 (0.012) 0.025 ± 0.007 (0.020) 0.1282 Cerebellum

0.013 ± 0.001 (0.013) 0.020 ± 0.004 (0.018) 0.0927 Hippocampus

0.014 ± 0.002 (0.016) 0.058 ± 0.011 (0.060) 0.0051*

Data are represented as mean ± SE for cerebral cortex, cerebellum and hippocampus (ncontrol=6;

nexposure=6). Wilcoxon rank sum test was used to compare control and exposure group. *p<0.05 compare to control group.

(85)

8 Iba-1 (Fold of control)

Brain region Control

Mean ± SE (Median)

Exposure

Mean ± SE (Median) p-value Cerebral cortex

1.00 ± 0.22 (0.99) 0.73 ± 0.15 (0.77) 0.4712 Cerebellum

1.00 ± 0.20 (0.86) 1.54 ± 0.15 (1.48) 0.0927 Hippocampus

1.00 ± 0.13 (0.93) 0.79 ± 0.17 (0.70) 0.2980

Data are represented as mean ± SE for cerebral cortex, cerebellum and hippocampus (ncontrol=6;

nexposure=6). Wilcoxon rank sum test was used to compare control and exposure group. *p<0.05 compare to control group.

9 LC3b (Fold of control)

Brain region Control

Mean ± SE (Median)

Exposure

Mean ± SE (Median) p-value Cerebral cortex

1.00 ± 0.21 (0.79) 0.68 ± 0.09 (0.71) 0.2298 Cerebellum

1.00 ± 0.17 (0.97) 0.76 ± 0.08 (0.79) 0.4712 Hippocampus

1.00 ± 0.15 (0.88) 1.27 ± 0.26 (1.16) 0.2298

(86)

10 Aβ42 (Fold of control)

Brain region Control

Mean ± SE (Median)

Exposure

Mean ± SE (Median) p-value Cerebral cortex

1.00 ± 0.10 (1.00) 0.68 ± 0.09 (0.71) 0.0927 Cerebellum

1.00 ± 0.07 (1.03) 0.99 ± 0.09 (0.97) 0.9362 Hippocampus

1.00 ± 0.08 (1.02) 1.08 ± 0.06 (1.05) 0.8102

Data are represented as mean ± SE for cerebral cortex, cerebellum and hippocampus (ncontrol=6;

nexposure=6). Wilcoxon rank sum test was used to compare control and exposure group. *p<0.05 compare to control group.

11 t-Tau (Fold of control)

Brain region Control

Mean ± SE (Median)

Exposure

Mean ± SE (Median) p-value Cerebral cortex

1.00 ± 0.12 (1.03) 0.99± 0.10 (0.90) 0.2980 Cerebellum

1.00 ± 0.11 (0.93) 0.99 ± 0.08 (0.99) 0.9362 Hippocampus

1.00 ± 0.12 (1.00) 1.06 ± 0.10 (1.15) 0.9362

Data are represented as mean ± SE for cerebral cortex, cerebellum and hippocampus (ncontrol=6;

nexposure=6). Wilcoxon rank sum test was used to compare control and exposure group. *p<0.05 compare to control group.

參考文獻

Outline

相關文件

The observed small neutrino masses strongly suggest the presence of super heavy Majorana neutrinos N. Out-of-thermal equilibrium processes may be easily realized around the

• Many-body physics is essential for sub-keV detectors of neutrinos and dark matter. • High-quality many-body calculations can substantially reduce

Students can understand there are different types of pollution (air pollution/land pollution/noise pollution/water pollution). Students can understand why there is

In addition to examining the influence that the teachings of Zen had on Shi Tao’s art and theoretical system, this paper proposes further studies on Shi Tao’s interpretation on

由於此,遂使觀音轉向女神趨近,性質為之一變,成為守護航海平 安之神而被祀奉於海中之島嶼。 10

•肺炎 •嚴重急性呼吸系統綜合症(「沙

• The Tolerable Upper Intake level (UL) is the highest nutrient intake value that is likely to pose no risk of adverse health effects for individuals in a given age and gender

In terms of external cognitive factors, this research confirmed that assurance, apathy and price reasonability as part of the service quality dimension have influence on