# 建議

## 第五章 結果討論

(一) 在研究對象方面

(二) 在研究工具方面

(三) 在研究設計方面

178

### 貳、 教育工作方面

(一) 教學方面

1. 教師需針對閱讀障礙學童進行等號符號教學

2. 等號符號教學應直接明示、呈現不同類型的等式

3. 等號概念教學應列舉不同類型之等式

179

(二) 評量方面

180

### 一、中文部分

Skemp(1985)：數學學習心理學(林義雄‧陳澤民譯)。臺北市：遠流出版 社。

(NSC96-2511-S-003-010-MY2)。

(NSC98-2511-S-003-010-M)。

181

99-2511-S-153-001-M)。

182

Raven and J. H. Court)。臺北市：中國行為科學社。

183

### 二、英文部分

Ardila, A., & Rosselli, M. (2002). Acalculia and Dyscalculia.

Neuropsychology Review, 12, 179-231.

Behr, M., Erlwanger, S. and Nichols, E.(1976). How children view equality sentences, PMDC Technical Report No. 3, Florida State University.

(ERIC Document Reproduction Service No. ED144802).

Behr, M., Erlwanger, S., & Nichols, E. (1980). How children view the equals sign. Mathematics Teaching, 92, 13-15.

Cajori, F. (1928-1929). Signs of equality. In F. Cajori, A history of mathematical notations (pp.297-309). New York, NY: Dover Publications.

Chiappe, P. (2005). How reading research can inform mathematics difficulties: the search for the core deficit. Journal of Learning Disabilities, 38, 313-317.

Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children's understanding of equality: A foundation for algebra. Teaching Children Mathematics, 6, 232-236.

Freiman, V & Lee, L. (2004). Tracking primary students' understanding of the equality sign. Proceedings of the 28th Conference of the

184

International Group for the Psychology of Mathematics Education (Vol.

2, pp. 415-422).

http://www.ldonline.org/article/5896/

Geary, D. C. (1993). Mathematical disabilities: Cognitive,

neuropsychological and genetic components. Psychol. Bull. 114:

345–362.

Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4-15.

Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithemetical cognition: A longitudinal study of process and concept deficits in children with learning disabilities. Journal of Experimental Child Psychology, 77, 236-263.

Ginsburg, H. (1977). Children's Arithmetic; Van Nostrand, New York.

Haylock, D. & Cockburn, A. (2008). Understanding mathematics for young children. Washington, DC

Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal Study of Mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading

185

difficulties. Child Development, 74, 834-850.

Kieran, C. (1981). Concepts associated with the equality symbol.

Educational studies in mathematics, 12(3), 317-326.doi:

10.1007/BF00311062

Knuth, E. J., Alibali, M. W., McNeil, N, M., Weinberg, A., & Stephens, A.

C. (2005). Middle school students’ understanding of core algebraic concepts: Equivalence and variable. Zentralblatt fur Didaktik der

Mathematik [International Reviews on Mathematical Education], 37(1),

68-76.

Kulak, A. G. (1993). Parallels between math and reading disability: common issues and approaches. Journal of Learning Disabilities, 26(10),

666-673.

Lerner, J. & Jonhs, B(2009).Learning Disabilities and related mild disabilities.New York,NY.

Molina, M & Ambrose, R. (2006). Fostering relational thinking while negotiating the meaning of the equal sign. Teaching Children Mathematics, 13(2), 111-117.

Oksuz, C. (2007). Children's Understanding of Equality and the Equal Symbol. International Journal for Mathematics Teaching and Learning.

186

Saenz-Ludlow, A & Walgamuth, C. (1998). Third graders' interpretations of equality and the equal symbol. Educational Sstudies in Mathematics, 35, 153-187.

Sfard A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.

Toluk Ucar, Z & Yavuz, B. (2011). Elementary school students' intuitive understanding of the inequality signs. The 35th Conference of the International Group for the Psychology of Mathematics Education, Ankara Turkey.

Usiskin, Z. (1997). Doing algebra in grades K-4. Teaching Children Mathematics, 3, 346-357

187

188 Ucar&

Yavuz

5.Only name。

6.其他。

189

Carpenter (1999)

Freiman &

Lee

36000+54000

=52000+□

25+□=25+45 25+□=45+25 小六 67000 =5+□