• 沒有找到結果。

第五章 結論與建議

5.2 建議

1. 本研究使用 MNP-G3 已證實有效去除重及回收金屬試驗,故後續試 驗可以針對貴重金屬進行測試,提高經濟效益。

2. 試驗其他不同磁性奈米顆粒複合樹狀高分子之參數,如將製備反應時

間縮短、延長,測試其最佳配置效率。

3. 測試 MNP-Gn 之還原能力,確認去重金屬機制是否和氧化還原機制 有關。

4. 分析 MNP-Gn 表面官能基數量,確認表面官能基實際去除污染物效 率。

5. 對於 MNP-Gn 開始進行模擬管柱及砂箱試驗,以利未來運用於實地 之可行性。

6. 界達電位分析結果發現,不同世代材料之等電為點雷同,未來可以試 驗表面官能基的增加對於表面帶電性是否有影響。

7. 為了使本研究擴展,可以將複合材料加入有離子強度之廢水當中,測 試不同環境下對於吸附效果之影響。

8. 進行奈米樹狀高分子複合磁性金屬之磁性特性分析。

參考文獻

Baars, M.W.P.L., Froehling, P.E. and Meijer, E.W. (1997) Liquid-liquid extractions using poly (propylene imine) dendrimers with an apolar periphery. Chem Commun. 1959-1960.

Balogh, L. and Tomalia, D.A. (1998) Poly (Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters. J. Am. Chem. Soc. 120, 7355-7356.

Belongia, B.M., Haworth, P.D., Baygents, J.C. and Raghavan, S. (1999) Treatment of alumina and silica chemical mechanical polishing waste by electrodecantation and electrocoagulation. J. Electro chem. Soc. 146, 4124-4130.

Ben-ishay, M.L. and Gedanken, A. (2007) Difference in the monding scheme of calyx(6)arene and p-sulfonic calyx(6)arene to nanoparticle of Fe2O3 and Fe3O4. Langmuir. 23, 5238-5242.

Chang, Y.C. and Chen, D.H. (2005) Preparation and adsorption properties of Cu (II) ions. J. Colloid Int. Sci. 293, 443-451.

Chen, D.H. and Huang, S.H. (2004) Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles. Process.

Biochem. 39, 2207-2211.

Cordula, G., Volker, B., Alessandro, C., Dozol, J., David, N.R., Marta, M.R.,

Sandra, R., Jorachim, T., Rocco, U. and Willem, V. (2005) Dendrimer-coated magnetic particles for radionuclide separation. J.

Magn. Magn. Mater. 293, 559-566.

Correia, N.T., Ramos, J.J.M., Saramago, N.J.V. and Calado, J.C.G. (1997) Estimation of the Surface Tension of a Solid : Application to a Liquid Crystalline. Polymer J. Colloid Int. Sci. 189, 361.

Crooks, R.M., Zhao, M., Sun, L., Chechik, V. and Yeung, L.K. (2001) Dendrimer-encapsulated metal nanoparticles : Synthesis characterization, and applications to catalysis. Acc. Chem. Res. 31, 181-190.

Deliuanni, E.A., Peleka, E.N. and Matis, K.A. (2007) Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. J. Hazard. Mater.

141, 176-184.

Diallo, M.S., Balogh, L., Shafagati, A., Johnson, J.H. Jr., Goddard, W.A. and Tomalia, D.A. (1999) Poly (amidoamine) dendrimer : A new class of high capacity chelating agents for Cu (II) ions. Environ. Sci. Technol. 33, NO5.

Diallo, M.S., Christie, S., Swaminathan, P., Johnson, Jr. J.H. and Goddard, W.A. (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous soluteions usinf PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ. Sci. Technol. 39,

Enzel, P., Adelman, N., Beckman, K.J., Campbell, D.J., Ellis, A.B. and Lisensky, G.C. (1999) Preparation of an aqueous-based ferrofluid. J.

Chem. Educ. 76, 943.

Farrell, J., Wang, J., O’Day, P. and Conklin, M. (2001) Electroche

mical and Spectroscopic Study of Arsenate Removal from Water Using Zero-Valent Iron Media. Environ. Sci. Technol. 35, 2026-2032.

Francisco, T.V. and Balbuena, P.B. (2004) Complexation of the lowest generation poly (amidoamine)-NH2 dendrimer with metal ions, metal atoms, and Cu(II) Hydrates : An a b initio study. J. Phys. Chem. 108, 15992-16001.

Froehling, P.E. (2001) Dendrimer and dyes-a review. Dyes and Pigments. 48, 187-195.

Gao, F., Pan, B.F., Zheng, W.M., Ao, L.M. and Gu, H.C. (2005) Study of streptavidin coated onto PAMAM dendrimer modified magnetic nanoparticles. J. Magn. Magn. Mater. 293, 45-54.

Goino, M. and Esumi, K. (1998) Interactions of poly (amidoamine) dendrimers with alumina particles. J. Colloid Interface Sci. 203, 214-217.

Grohn, F., Bauer, B.J., Akoalu, Y.A., Jackson, C.L. and Amis, E.J. (2000) Dendrimer templates for the formation of gold nanoclusters.

Macromol. 33, 6042-6050.

Gruttner, C., Bohmer, V., Casnati, A., Dozol, J.F., Reinhoudt, D.N., Reinoso-Garcia, M.M., Rudershausen, S., Teller, J., Ungaro, R., Verboom, W. and Wang, P. (2005) Dendrimer-coated magnetic particle for radionuclide separation. J. Magn. Magn. Mater. 293, 559-566.

Grabchev, I., Staneva, D. and Betcheva, R. (2006) Sensor activity, photodegradation and photostabilization of a PAMAM dendrimer comprising 1,8-naphthalimide functional groups in its periphery.

Polymdegradstab. 91, 2257-2264.

Hirakawa, T. and Kamat, P.V. (2004) Photoinduced electron storage and surface Plasmon modulation in Ag TiO2 clisters. Langmuir. 20, 5645-5647.

Higashitani, K., Kondo, M. and Hatade, S. (1991) Effect of particle size in coagulation rate of ultrafine colloidal Particles. J. Colloid Interface. Sci.

142, 204-213.

Hoover, N.N., Auten, B.J. and Chandler, B.D. (2006) Turing Supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles. J. Phys.

Cjem. 110, 8606-8612.

Huang, S.H., Li, S.R., Bai, Z.W., Pan, Z.Q. and Yin, C.Q. (2006) Dendrimer-like chiral stationary phases derived from (1R, 2R)-(+)-1,2-Dipheny;ethylenediamine and 1,3,5-Benzenetricarbonyl

Irving, H. and Williams, R.J.P. (1953) Stability of transition metal complexe.

J. Chem. Soc. 3192-3210.

Jiang, Y., Gao, Q., Yu, H., Chen, Y. and Deng, F. (2007) Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic Hybrid materials.

Microporous. Mater. 103, 316-324.

Kaczoroaska, M.A. and Cooper, H.J. (2009) Elrctron capture dissociation and collision-induced dissociation of metal ion (Ag+ , Cu2+ , Zn2+ , Fe2+ and Fe3+) complexes of polyamidoamine (PAMAM) dendrimer. J. Am. Soc.

Mass. Spectrom. 20, 674-681.

Knecht, M.R. and Crooks, R.M. (2007) Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atoms. New J. Chem. 31, 1349-1353.

Knecht, M.R., Weir, M.G.., Frenkel, A.I. and Crooks, R.M. (2008) Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations. Chem. Mater. 20, 1019-1028.

Korkosz, R.J., Gilbertson, J.D., Prasifka, K.S. and Chandler, B.D. (2007) Dendrimer templates for supported Au catalysts. Catal. Today. 122, 370-377.

Lackovic, J.A., Nikolaidis, N.P. and Dobbs, G.M. (2000) Inorganic arsenic

removal by zero-valent iron. Environ. Eng. Sci. 17, 29.

Li, B. and Bu, J. (2004) A study on the reaction kinetic of dendrimerization by FT-IR spectroscopy : Propagation of PAMAM dendrimer on silica gel.

Korean J. Chem. Eng. 21, 98-103.

Li, L., Wang, B., Tan, H., Chen, T. and Xu, J. (2006) A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafilteration membrane. Membrane Sci. 269, 84-93.

Li, Y. H., Wang, S., Luan, Z., Ding, J., Xu, C. and Wu, D. (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon. 41, 1057-1062.

Li, Y. H., Zhu, Y., Zhao, Y., Wu, D. and Luan, Z. (2006) Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diamond. Relat. Matter. 15, 90-94.

Lu, C. and Chiu, H. (2006) Adsorption of zinc (II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 1138-1145.

Lu, C. and Liu, C. (2006) Removal of nickel (II) from aqurous solution by carbon nanotubes. Chem. Technol. Biotechnol. 81, 1932-1940.

Mak, S.Y. and Chen, D.H. (2004) Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide manetic nanoparticles. Dyes and

Manning, B.A., Hunt, M.L., Amrhein, C. and Yarmoff, J.A. (2002) Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products.

Environ. Sci. Technol. 36, 5455.

Mansfield, M.L. (1996) Surface adsorption of model dendrimers. Polymer. 37, 3835-3841.

Mehta, R.V., Upadhyay, R.V., Charles, S.W. and Ramchand, C.N. (1997) Direct binding of protein to magnetic particles. Biotechnol. Tech. 77, 493-496.

Melitas, N., Conklin, M. and Farrell, J. (2002) Electrochemical Study of Arsenate and Water Reduction on Iron Media Used for Arsenic Removal from Potable Water. Environ Sci Technol. 36, 3188.

Morel, F.M.M. and Hering, J.G. (1993) Principles and applications of aquatic chemistry. John Wiley and Sons, Inc. 344-345.

Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Lee Penn, R. and Driessen, M.D. (2005) Characterization and properties of metallic iron nanoparticles : spectroscopy, electrochemistry, and kinetics. Environ.

Sci. Technol. 39(5), 1221-1230.

Pan, B.F., Gao, F. and Gu, H.C. (2005) Dendrimer modified magnetic nanoparticles for protein immobilization. J. Colloid Interface Sci. 284, 1-5.

Pan, Z., Somasundaran, P., Turro, N.J. and Jockusch, S. (2004) Interactions of cationic dendrimers with hematite mineral. Colloids. Surfaces. 238, 123-126.

Ploehn, H.J., Amiridis, M.D. and Murphy, C.J. (2002) Dendrimer-stabilized nanoparticles for next-generation catalysts. Nanoscale Sci. Eng. 11-13.

Ponder, S.M., Darab, J.G. and Mallouk, T.E. (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34, 2564.

Rao, G.P., Lu, C. and Su, F. (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes : A review. Sep. Purif. Technol. 58, 224-231.

Rether, A. and Schuster, M. (2003) Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React. Funct. Polym. 57, 13-21.

Ruckenstein, E. and Lee, S.H. (1987) Stability of polymeric surfaces subjected to ultraviolet irradiation. J. Colloid Int. Sci. 117, 172.

Saiyed, Z.M., Sharma, S., Godawat, R., Telang, S.D. and Ramchand, C.N.

(2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). Biotechnol. Progr. 131, 240-244.

Scott, R.W.J., Wilson, O.M. and Crooks, R.M. (2005) Synthesis

nanoparticles. J. Phys. Chem. 109, 692-704.

Shieh, D.B., Cheng, F.Y., Su, C.H., Yeh, C.S., Wu, M.T., Wu, Y.N., Tsai, C.Y., Wu, C.L., Chen, D.H. and Chou, C.H. (2005) Aqueous dispersions of magnetic nanoparticles with NH3+ surface for magnetic manipulatuons of bionolecules and MRI contrast agents. Biomaterials. 26, 7183-7191.

Shi, X., Lee, I. and Barker, Jr. J.R. (2007) Acetylation of dendrimer-entrapped gold and silver nanoparticles. J. Mater. Chem. 18, 586-893.

Shi, X., Thomas, T.P., Myc, L.A., Kotlyar, A. and Baker, Jr. J.R. (2007) Synthesis characterization and intracellular uptake of carboxyl-terminated poly (amidoamine) dendimer-stabilized iron oxide nanoparticles. Phys. Chem. Chem. Phys. 9, 5712-5720.

Su, C. and Puls, R.W. (2004) Nitrate Reduction by Zerovalent Iron : Effects of Formate, Oxalate, Citrate, Chloride, Sulfate, Borate, and Phosphate.

Environ. Sci. Technol. 38, 5224.

Tanaka, Y., Nemoto, T., Naka, K. and Chujo, Y. (2000) Preparation of CaCO3/polymer composite films via interaction of anionic starburst dendrimer with poly (ethylenimine). Polymer Bulletin. 45, 447-450.

Tomalia, D.A. (2005) Birth of a new macromo;ecular architecture : dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 30, 294-324.

Tomalia, D.A., Dewald, H.B., Hall, M., Kallos, G., Martin, S. and Roeck, J.

(1985) A new class of polymers:Starburst-dendritic macromolecules.

Polym. J. 17, 117-132.

Torigoe, K., Suzuki, A. and Esumi, K. (2001) Au(Ⅲ)-PAMAM Interaction and Formation of Au-PAMAM nanocomposites in ethyl acetate. Colloid Interface Sci. 241, 346-356.

Tretinnikov, O.N. (1997) Selective Accumulation of Functional Groups at the Film Surfaces of Stereoregular Poly (methyl methacrylates). Langmuir.

13, 2988.

Xu, Y. and Zhao, D. (2005) Removal of copper from contaminated soil by use of poly (amidoamine) dendimers. Environ. Sci. Technol. 39, 2369-2375.

Yoza, B., Arakaki, A. and Matsunaga, T. (2003) DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. Biotechnol. 101, 219-228.

Zhou, L., Russell, D.H., Zhao, M. and Crooks, R.M. (2001) Characterization of poly (amidoamine) dendrimer and their complexes with Cu2+ by matrix-assited laser desorption ionization mass. Macromolecules. 34, 3567-3573.

行政院環境保護署 http://www.epa.gov.tw/。

吳欣蓉(2004)鉻污染之土壤及地下水現地整治(上),中技社 綠色技術 發展中心工程師,經濟部環保技術e 報,14 期。

吳欣蓉(2005)鉻污染之土壤及地下水現地整治(下),中技社 綠色技術 發展中心工程師,經濟部環保技術e 報,15 期。

連興隆、陳建良、蔡郁佳 (2004) 奈米級零價鐵金屬對五價砷吸附效果之 探討,第一屆環境保護與奈米科技學術研討會,新竹。

陳建良、蔡郁佳、蘇筱婷、連興隆 (2003) 奈米複合金屬之催化特性探討,

第一屆土壤與地下水處理技術研討會。

陳呈芳(2007)土壤重金屬污染整治技術,中興工程顧問股份有限公司 工程師,經濟部環保技術e 報,34 期。

陳珮紋 (2004) 利用 Fe3O4 磁性顆粒處理化學機械研磨廢水,國立中央大 學環境工程研究所,碩士論文。

陳珮紋、秦靜如 (2005)利用利用 Fe3O4 磁性顆粒處理化學機械研磨廢 水,奈米研討會論文集,85-92。

陳慎德 (2003) 淺論我國農地土壤重金屬污染處理之現況與問題,瑞昶科 技股份有限公司,台灣土壤及地下水環境保護協會簡訊,第九期,

10-17。

陳谷汎、高志明(2002)土壤及地下水物理/化學復育技術,國立中山大 學環境工程研究所,台灣土壤及地下水環境保護協會簡訊,第五期,

3-5。

黃信華 (1994)高度分枝樹枝狀聚合物之矽晶圓表面自組裝研究,國立清 華大學原子科學系,碩士論文。

衛生心工程系,碩士論文。

侯萬善 (2004) 廢水金屬處理回收之技術方案與經濟效益,中技社 綠色 技術發展中心工程師,經濟部環保技術e 報,11 期。

葉佳玲 (2008) 磁性奈米鐵吸附水中酸性染料之特性研究,義守大學土木 與生態工程學系,碩士論文。

葉琮裕 (2002) 重金屬污染農地整治技術。環保訓練雙月刊,第 61 期。

楊婉琳 (2003) 含銀廢液電解還原之研究,國立成功大學環境工程研究 所,碩士論文。

楊金鐘、陳儀勳 (2008) 奈米級 Fe3O4與模擬地下水中NO3-及Cd2+之反應 行為研究,第五屆環境保護與奈米科技學術研討會,194-199.

趙介民 (2007) 樹枝狀分子改質、鑑定及應用研究,國防大學中正理工學 院,博士論文。

蔡佑昌 (2005) 自組裝樹枝狀分子性質之研究,清華大學原子科學系,碩 士論文。張慶源、曾吉永、謝哲隆、陳奕宏 奈米及磁性聚合物之合 成及其應用於水中有機化合物去除之研究,行政院國家科學委員會 專題研究計劃成果報告。

鄭豐裕 (2006) 飼養化三鐵磁性奈米立子之製備及其在生物醫學上的應 用,國立成功大學,化學研究所博士論文。

鄧宗禹、黃志彬、邱顯盛 (2002) 化學機械研磨廢液之處理與回收,國科 會國家毫微米元件實驗室通訊,第九卷,第一期,32-41。

劉伊郎、陳恭 (2000) 氧化鐵 (Fe3O4) 薄膜與超晶格,國立中正大學,

物理雙月刊,26 卷 6 期 592-605.

蕭薀華、傅崇德 (2004) 環境工程化學,滄海書局,101-103。

附錄一 金屬分析之檢量線

Co Ni

附錄二 實驗數據

4. 不同價數金屬對 pH 之試驗 0 1.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.5 0.8583 0.0524 0.9072 0.0147 0.5000 0.2064 0.5000 0.0785 1 0.8843 0.0579 0.8488 0.0238 1.0000 0.1306 1.0000 0.0755 2 0.8612 0.0266 0.8475 0.0265 2.0000 0.1232 2.0000 0.0000 4 0.8623 0.1004 0.8437 0.0373 4.0000 0.0339 4.0000 0.0745 8 0.7740 0.0199 0.8367 0.0208 8.0000 0.2048 8.0000 0.0000

K+ Li+ 0 1.0000 0.0000 1.0000 0.0000 0.5 0.8315 0.0262 0.9804 0.0218 1 0.7941 0.0267 1.0150 0.0212 2 0.8040 0.0368 0.9765 0.0332 4 0.7574 0.0320 0.9360 0.0339 8 0.7824 0.0433 0.9600 0.0000

pH=6

pH=7

2 0.3823 0.0463 0.3344 0.0105 0.7635 0.0106 0.9930 9.8995e-3 4 0.3117 0.0429 0.2720 0.0206 0.7600 0.0410 0.9930 9.8995e-3 8 0.3522 0.0597 0.2144 4.5255e-3 0.7215 0.0262 0.9885 0.0163

Mn2+ Co2+ Ni2+

pH=7

7. MNP-G5 再利用試驗

MNP 再利用 test

0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.5 0.7622 0.0535 0.6975 0.0530 0.3291 0.0114 0.0239 1.5152e-3

1 0.8008 0.0247 0.6650 0.1202 0.2999 0.0749 0.0221 3.0305e-3 2 0.7250 2.3570e-3 0.6108 1.1785e-3 0.2453 0.0612 0.0112 3.0305e-4 4 0.8167 0.0141 0.5883 0.0872 0.2429 0.0606 0.0277 0.0194 8 0.7092 0.0813 0.5467 0.0919 0.2040 0.0509 0.0195 7.0711e-4

MNP-G3

0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.5 0.5917 0.1014 0.6013 0.0202 0.2904 0.0305 0.1100 0.0566

1 0.5599 0.0156 0.4734 0.0206 0.2838 0.0541 0.1190 1.4142e-3 2 0.5313 0.0505 0.4909 0.0595 0.2795 0.0134 0.0280 0.0396 4 0.4795 0.0290 0.5208 0.0224 0.2669 0.0154 0.0430 0.0495 8 0.5382 0.0497 0.4861 0.0211 0.2899 0.0454 0.0440 0.0537

10. 酸洗 MNP-G3 濃縮再利用

MNP-G3

Recycle (%) 47.80 48.20 54.80 33 60 40.90 32.30 40.52

MNP

脫附劑使用 HCl 10 ml (0.05 %),再利用

Time (hr) 0 0.5 1 2 4 8 12 24 24.1 25 Conc. (mg/L) 10 0.4 0.23 0.22 0.32 0.28 0.32 0.16 10 0.61

Time (hr) 27 27.1 28 30 30.1 31 33 33.1 34 36 Conc. (mg/L) 0.71 10 0.37 0.59 10 0.8 0.68 10 0.547 0.81

Time (hr) 36.1 37 39 39.1 40 42 42.1 43 45 Conc. (mg/L) 10 1.27 1.18 10 0.06 0.34 10 0.65 0.41

回收率

Times 1 2 3 4 5 6 7 Ave.

Recycle (%) 55.20 48 59.80 46.50 37.50 53 27.90 40.68

附錄三 口試委員意見回覆

口試委員:席行正教授

1. 研究優勢在哪裡?

回覆: 主要是利用 dendrimer 金屬高去處效率,搭配 Fe3O4可以磁性回收 之優點,進行屬中金屬離子去除和回收,藉此減少成本、並可以 有效進行材料及金屬離子之回收。

2. 論文最大優缺點?

回覆: 優點:可以有效重複再利用。金屬離子也可以經由簡單操作步驟進 行回收程序。

缺點:目前合成步驟較花費時間,故如能有效縮短合成時間,必定 可以有效提高其經濟效益。

3. Dendrimer 可以長在基板上嗎?

回覆: 可以,目前已經有學者將 dendrimer 複合於 CaCO3上 (Tanaka et al., 2000),進行材料合成方面的試驗。

口試委員:袁菁教授

1. P. 6 文獻表格排版?

回覆: 已在文中 (P. 6)修改完成。

2. 圖表後面要放文獻 (第 2 章)?

回覆: 已在文中 (第 2 章)修改完成。

3. 參考文獻中之頁碼有缺?

回覆: 已在文中修改完成。

4. 競爭吸附一次金屬太多 (實驗中為 5 種),理應一次加一種,逐次增加 試驗?

回覆: 此考量因素放入第五章建議事項。

5. 為何使用 pH 4~7,文章中需要交代一下?

回覆: 已在文中 (第 4 章)修改完成。

6. 如何確定世代已經複合成功? G5 效果不如 G3,會不會是因為沒有複 合成功?

回覆: 依目前試驗沒有辦法完全證實,故本試驗將會進行 EA 測試材 料 N 之百分比,藉此推算附著於表面之高分子材料含量;G5 效 果不如 G3 的確可能會因合成失敗而導致,但本試驗皆有進行重 複試驗,且據文獻提到 (Yinhui, 2005),當高分子世代越高,其表 面官能基過多時,可能會有交錯、擁擠情形發生,亦會導致吸附 能力不如低世代之高分子材料。

7. P. 63,等電位點各項材料差不多,為什麼表面增加官能基,等電位點 不會有明顯改變?

回覆: 此考量因素放入第五章建議事項

8. TEM 的倍數最好一致,這樣比較下才有意義?

回覆: 後續試驗會注意此細節。

9. P. 88,文字敘述不佳?

回覆: 已在文章 P. 88 中修正。

10. 競爭吸附中,加入 As5+後會有什麼結果發生?

回覆: 在低 pH 環境下,因為金屬砷 (As)於酸性環境下帶負電,加上就 一般而言,高價數金屬較低價數金屬容易行錯合反應,故如果加

回覆: 在低 pH 環境下,因為金屬砷 (As)於酸性環境下帶負電,加上就 一般而言,高價數金屬較低價數金屬容易行錯合反應,故如果加