• 沒有找到結果。

第五章 結論與未來展望

5.2 未來展望

在可預見的未來裡,可程式化元件的使用率將隨著系統複雜度增加而 提升,尤其是類比電路由於設計及實現具有較高挑戰性,以及在真實世界 中大都以類比訊號方式作為傳遞媒介等原因,使得多用途的可程式類比陣 列能在未來訊號處理領域裡佔有一席之地,並同時讓電路系統擁有動態可 規劃功能的優點。因此設計者只需利用此可重複規劃的功能便可輕易地變 換系統響應,以應付外界環境變化時所造成的影響,如此整體系統的彈性 與應用層面便能更為廣泛。

在完成本論文系統設計與模擬之後,為了進一步地改善本系統電路之 效能,因此將未來可發展的方向大致列舉如下:

1. 頻寬的提高:對於可程式化的類比系統而言,電路元件與開關元 件乃是限制整體頻寬的最主要因素,因此未來可以嘗試簡化所使 用的轉導器電路,或是從避免開關寄生效應的方向來著手。

2. 雜訊的改善:由於本 FPAA 是以 5V 電源電壓為設計基礎,所以 並未詳究電路雜訊的影響程度。但是隨著電源電壓逐漸降低而使 得輸出訊號範圍縮減的趨勢下,就必須針對雜訊的來源加以分 析,以免電路動態範圍遭受不必要的干擾。

3. 可靠的繞線設計與控制機制:FPAA 主要目的即在於促使類比電 路擁有可程式化的功能,因此具有高度可規劃彈性與低失真度的 連線網路佈局將是未來研究發展之重要課題。最後,除了硬體部 分的設計外,為了提供使用者人性化的設計平台以便捷地完成電 路規劃工作,屬於軟體部分的人機介面程式亦是相當重要的一環。

參考文獻

[1] T. Yamamoto, S. I. Gotoh, T. Takahashi, K. Irie, K. Ohshima, and N.

Mimura, “A Mixed-Signal 0.18-µm CMOS SoC for DVD Systems with 432-MSample/s PRML Read Channel and 16-Mb Embedded DRAM,”

IEEE J. Solid-State Circuits, Vol. 36, pp. 1785-1794, Nov. 2001.

[2] Anadigm, Inc., AN221E02 Data Sheet, 2001.

[3] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Yichuang Sun, “A Field Programmable Analog Array for CMOS Continuous-Time OTA-C Filter Applications,” IEEE J. Solid-State Circuits, Vol. 37, pp. 125-136, Feb. 2002.

[4] H. Kutuk and Sung-Mo Kang, “A Field-Programmable Analog Array

(FPAA) Using Switched-Capacitor Techniques,” IEEE ISCAS, Vol. 4, pp. 41-44, May 1996.

[5] X. Quan, S.H.K. Embabi, and E. Sanchez-Sinencio, “A Current-Mode Base Field Programmable Analog Array Architecture for Signal Processing Applications,” IEEE Proceedings of Custom Integrated Circuits, pp. 277 -280, May 1998.

[6] D. Anderson, C. Marcjan, D. Bersch, H. Anderson, and P. Hu, “A Field Programmable Analog Array and Its Application,” IEEE Proceedings of Custom Integrated Circuits, pp. 555-558, May 1997.

[7] A. C. Carusone and D. A. Johns, “A 5th Order Gm-C Filter in 0.25µm CMOS with Digitally Programmable Poles & Zeros,” IEEE ISCAS, Vol. 4, pp. 26-29, May 2002.

[8] C. Premont, R. Grisel, N. Abouchi, and J.-P. Chante, “Current-Conveyor

Based Field Programmable Analog Array,” IEEE ISCAS, Vol. 1, pp.

155-157, Aug. 1996.

[9] J. Silva-Martinez, J. Adut, J. M. Rocha-Perez, M. Robinson, and S.

Rokhsaz, “A 60-mW 200-MHz Continuous-Time Seventh-Order Linear Phase Filter with On-Chip Automatic Tuning System,” IEEE J.

Solid-State Circuits, Vol. 38, pp. 216-225, Feb. 2003.

[10] P. G. Gulak, “Filed Programmable Analog Arrays: Past, Present and Future Perspectives,” IEEE Region 10 International Conference on Microelectronics and VLSI, pp. 123-126, November 1995.

[11] F. Krummenacher and N. Joehl, “A 4-MHz CMOS Continuous-Time Filter with On-Chip Automatic Tuning,” IEEE J. Solid-State Circuits, Vol.

23, pp. 750-758, June 1988.

[12] T. Kwan and K. Martin, “An Adaptive Analog Continuous-Time CMOS Biquadratic Filter,” IEEE J. Solid-State Circuits, Vol. 26, pp. 859 -867, June 1991.

[13] D. A. Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., New York, 1997.

[14] E. K. F. Lee and P. G. Gulak, “Field Programmable Analogue Array Based on MOSFET Transconductors,” Electronics Letters, Vol. 28, pp. 28 -29, June 1992.

[15] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc., New York, 2001.

[16] M. Padmanabhan and K. Martin, “A CMOS Analog Multi-Sinusoidal Phase-Locked-Loop,” IEEE J. Solid-State Circuits, Vol. 29, no. 9, pp.

1046-1057, Sep. 1994.

[17] Jun Cheng and Guican Chen, “A CMOS Bandgap Reference Circuit,”

IEEE Proceedings of ASIC, pp. 271-273, Oct. 2001.

[18] J. N. Babanezhad and R. Gregorian, “A Programmable Gain/Loss Circuit,” IEEE J. Solid-State Circuits, Vol. 22, no. 6, pp.1082-1090, Dec.

1987.

[19] G. S. Asmanis, “A Low Voltage OP-Amp with Constant-Gm Rail-to Rail Input and High Swing Self-Biasing Super Cascode Output Stage,” IEEE ISCAS, Vol. 1, pp. 444-447, June 1998.

[20] K. A. Kozma, D. A. Johns, and A. S. Sedra, “On The Tuning of Continuous-Time Integrated Filters, Including Parasitic Effects” IEEE ISCAS, Vol. 2, pp. 835-838, May 1992.

[21] M. Toki, “High Effective Q CMOS Crystal Oscillator Design,” IEEE International Symposium on Frequency Control, Vol. 1, pp. 366-369, Apr.

1999.

[22] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Oxford University Press, New York, 1998.

[23] H. Khorramabadi, “A CMOS Line Driver with 80-dB Linearity for ISDN Applications,” IEEE J. Solid-State Circuits, Vol. 27, no. 4, pp. 539-544, Apr. 1992.

[24] Paul R. Gray and Paul J. Hurst, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, Inc., New York, 2001.

[25] J. Faura, I. Lacadena, A. Torralba, and J. M. Insenser, “Programmable Analog Hardware: A Case Study,” IEEE International Conference on Electronics, Circuits and Systems, Vol. 1, pp. 297-300, Sept. 1998.

[26] S. M. Sait and M. S. K. Tanvir, “VLSI Layout Generation of A Programmable CRC Chip,” IEEE Transactions on Consumer Electronics, Vol. 39, pp. 911-916, Nov. 1993.

[27] Dan Clein and Gregg Shimokura, CMOS IC Layout: Concepts, Methodologies, and Tools, Newnes, Boston, 2000.

[28] Alan Hastings, The Art of Analog Layout, Prentice Hall, New Jersey, 2001.

[29] S. Ganesan and R. Vemuri, “FAAR: A Router for Field Programmable Anaolg Arrays,” IEEE Proceedings of VLSI Designs, pp. 556-563, Jan.

1999.

[30] 陳勇達, “以 Gm-C 為架構的程式可規劃類比陣列之系統電路設計,” 交 通大學電機與控制工程學系碩士論文, 2003.