• 沒有找到結果。

未來方向

在文檔中 車輛動態估測與預測系統 (頁 167-176)

10.2 未來方向

經由本論文的研究探討後,相關未來研究如下:

 在車輛模型/參數未知的狀況下,本論文所設計之車輛動態估測系統僅適用於 車輛輪胎尚未抬起之前,假如車輛輪胎受到各種因素而抬離地面時,車輛動態 估測系統將會失效而無法獲得目前車輛動態資訊,然而車輛輪胎抬離地面並不 代表車輛未來必定翻覆。因此為了補齊缺陷,仍必須拓展車輛動態估測系統之 適用範圍。

 本論文所設計之車輛參數鑑定系統,除了要提高訊噪比,還可以適當地挑選權 重函數以增加收斂速度,然而權重函數必須要根據觀察性程度來設計,這將可 以組成一個最佳化問題。

 本論文所設計之車輛參數鑑定系統,其中車體質量慣性矩之鑑定深受訊噪比之 影響,從本論文的模擬結果與討論可以知道,假如可從質量變化來評估車體質 量慣性矩,其鑑定精度將有可能會大幅提高,然而相關之計算方式仍需要分析 其可行性。

 本論文所設計之車輛參數鑑定系統,其中輪胎驅動與轉向剛性係數所組成的線 性輪胎模型無法描述車輛翻覆的情況,因而需採用非線性輪胎模型(如Pacejka 輪胎模型[57][58]、Dugoff 輪胎模型[84][85]…等)來描述更多情況的車輛動態

(如車輛翻覆、雪地行走、側向滑動…等),並透過最小平方法與其他參數鑑 定方式即可獲得非線性輪胎模型之參數,然而此方法之可行性仍需藉由實驗數 據來分析。

 本論文所設計之車輛軌跡跟隨系統為應用未來車輛動態資訊的車用控制系統之 一,由於車輛動態預測系統所提供之未來車輛動態資訊十分充足,因此針對車 輛各種安全與操控之車用控制系統皆可以使用未來車輛動態資訊,然而各式車 用控制系統使用未來車輛動態資訊之優缺點仍需進一步探討與分析。

   

 

參 考 文 獻

[1] NHTSA, “NHTSA Denies Firestone Request For Ford Explorer Investigation,” website:

http://www.nhtsa.gov/

[2] C. R. Carlson and J. C. Gerdes, “Optimal rollover prevention with steer by wire and differential braking,” in Proc. ASME Dynamic Systems and Control Division, Washington, DC, 2003, pp. 345-354.

[3] E. N. Scanchez, L. J. Ricalde, R. Langari, and D. Shahmirzadi, “Recurrent neural control for rollover prevention on heavy vehicles,” in Proc. IEEE International Conference on Neural Network, 2004, pp. 1841-1846.

[4] E. N. Scanchez, L. J. Ricalde, R. Langari, and D. Shahmirzadi, “Rollover prediction and control in heavy vehicles via recurrent neural networks,” in Proc. 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, 2004, pp. 5210-5215.

[5] P. Gaspar, Z. Szabo, and J. Bokor, “Prediction based combined control to prevent the rollover of heavy vehicles,” in Proc. 13th Mediterranean Conference on Control and Automation, Limas sol, Cyprus, 2005, pp. 575-580.

[6] L.-Y. Hsu and T.-L. Chen, “Vehicle full-state estimation and prediction system using state observers,” IEEE Transactions on Vehicular Technology, vol. 58, no. 6, pp.

2651-2662, 2009.

[7] L.-Y. Hsu and T.-L. Chen, “Estimating Road Angles with the Knowledge of the Vehicle Yaw Angle,” Transactions on ASME Journal of Dynamic Systems, Measurement and Control, vol.132, no. 3, pp. 031004, 2010.

[8] M. Tomizuka, J. K. Hedrick, and H. Pham, “Integrated maneuvering control for automated highway systems based on a magnetic reference/ sensing system,” California PATH, Berkeley, CA, Research Report UCBITS- PRR-95-12, Jan. 1995.

[9] P. Hingwe, “Robustness and performance issues in the lateral control of vehicle in automated highway system,” Ph.D. dissertation, Department of Mechanical Engineering, University California, Berkeley, CA, 1997.

[10] K. T. Feng, “Vehicle lateral control for driver assistance and automated driving,” Ph.D.

dissertation, Department of Mechanical Engineering, University California, Berkeley, CA, 2000.

[11] J. Ryu, “State and parameter estimation for vehicle dynamics control using GPS,”

Department of Mechanical Engineering, Stanford University, 2004.

[12] J. Ryu and J. C. Gerdes, “Integrating inertial sensors with GPS for vehicle dynamics control,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 126, pp.

243-254, 2004.

[13] J. Ryu, and J. C. Gerdes, “Estimation of vehicle roll and road bank angle,” in Proc.

American Control Conference, 2004, vol. 3, pp. 2110-2115.

[14] P. Yih, J. Ryu, and J. C. Gerdes, “Vehicle state estimation using steering torque,” in Proc.

American Control Conference, 2004 , vol.3, pp.2116-2121.

[15] Y. Fukada, “Slip-angle estimation for vehicle stability control,” Vehicle System Dynamics, vol. 32, no. 4/5, pp. 375-388, 1999.

[16] J.-O. Hahn, R. Rajamani, S.-H. You, and K. I. Lee, “Real-time identification of road-bank angle using differential GPS,” IEEE Transactions on Control System Technology, vol. 12, no. 4, pp. 589-599, 2004.

[17] H. E. Tseng, “Dynamic estimation of road bank angle,” Vehicle System Dynamics, vol.

36, no. 4/5, pp. 307-328, 2001.

[18] H. E. Tseng, L. Xu, and D. Hrovat, “Estimation of land vehicle roll and pitch angles,”

Vehicle System Dynamics, vol. 45, no. 5, pp. 433-443, 2007.

[19] B. L. Pence, H. K. Fathy, and J. L. Stein, “Sprung mass estimation for off-road vehicles via base-excitation suspension dynamics and recursive least squares,” in Proc. American Control Conference, 2009, pp. 5043-5048.

[20] L. Jianbo and T. B. Allen, “Attitude sensing system for an automotive vehicle,” United States Patent. Patent Number: 6 631 317, 2003.

[21] L. Jianbo and A. B. Todd, “System and method for characterizing vehicle body to road angle for vehicle roll stability control,” United States Patent. Patent Number: 7 003 389, 2006.

[22] Y. K. Peng and M. F. Golnaraghi, “A vector-based gyro-free inertial navigation system by integrating existing accelerometer network in a passenger vehicle,” in Proc. IEEE Conference on Position Location and Navigation Symposium, 2004, pp. 234-242.

[23] J. C. Becker and A. Simon, “Sensor and navigation data fusion for an autonomous vehicle,” in Proc. Intelligent Vehicles Symposium, 2000, pp.156-161.

[24] R. Jarvis, “An all-terrain intelligent autonomous vehicle with sensor-fusion-based navigation capabilities,” Control Engineering Practice, vol. 4, no. 4, pp. 481-486, 1996.

[25] N. H. Q. Phuong, H.-J. Kang, Y.-S. Suh, Y.-S. Ro, and K.-C. Lee, “A GPS/INS integration system for land vehicle application,” in Proc. International Joint Conference on SICE-ICASE, 2006, pp.482-487.

[26] S.-B. Kim, S.-Y. Lee, J.-H. Choi, K.-H. Choi, and B.-T. Jang, “A bimodal approach for GPS and IMU integration for land vehicle applications,” in Proc. IEEE Vehicular Technology Conference, 2003, vol.4, pp. 2750-2753.

[27] K. Kobayashi, K. Watanabe, and F. Munekata, “Accurate navigation via sensor fusion of differential GPS and rate-gyro,” in Proc. Instrumentation and Measurement Technology Conference, 1994, vol.2, pp.556-559.

[28] K. A. Redmill, T. Kitajima, and U. Ozguner, “DGPS/INS integrated positioning for control of automated vehicle,” in Proc. Intelligent Transportation Systems, 2001, pp.172-178.

[29] L. Ljung, System Identification: Theory for the User. Englewood Cliffs, NJ:

Prentice-Hall, 1987.

[30] J.-O. Hahn, R. Rajamani, and L. Alexander, “GPS-based real-time identification of tire-road friction coefficient,” IEEE Transactions on Control System Technology, vol. 10, no. 3, pp. 331-343, 2002.

[31] R. Anderson and D. M. Bevly, “Estimation of tire cornering stiffness using GPS to improve model based estimation of vehicle states,” in Proc. IEEE Conference on Intelligent Vehicles Symposium, 2005, pp. 801-806.

[32] K. Macek, K. Thoma, R. Glatzel, R. Siegwart, “Dynamics modeling and parameter identification for autonomous vehicle navigation,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 3321-3326.

[33] M. Rozyn and N. Zhang, “A method for estimation of vehicle inertial parameters,”

Vehicle System Dynamics, vol. 48, no. 5, pp. 547-565, 2010.

[34] S. Sivaramakrishnan, “Simultaneous identification of tire cornering stiffnesses and vehicle center of gravity,” in Proc. American Control Conference, 2008, pp. 2846-2851.

[35] D. Wesemeier and R. Isermann, “Identification of vehicle parameters using stationary driving maneuvers,” Control Engineering Practice, vol. 17, pp. 1426–1431, 2009.

[36] M. L. McIntyre, T. J. Ghotikar, A. Vahidi, X. Song, and D. M. Dawson, “A two-stage lyapunov-based estimator for estimation of vehicle mass and road grade,” IEEE Transactions on Vehicular Technology, vol.58, no.7, pp.3177-3185, 2009.

[37] D. M. Bevly, J. Ryu, and J. C. Gerdes, “Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp. 483-493, 2006.

[38] C. R. Carlson and J. C. Gerdes, “Consistent nonlinear estimation of longitudinal tire stiffness and effective radius,” IEEE Transactions on Control System Technology, vol. 13, no. 6, pp. 1010-1020, 2005.

[39] C.-S. Liu and H. Peng, “Road friction coefficient estimation for vehicle path prediction,”

Vehicle System Dynamics Supplement, vol. 25, pp. 413-425, 1996.

[40] G. Baffet, A. Charara, and G. Dherbomez, “An observer of tire-road forces and friction for active security vehicle systems,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 6, pp. 651-661, 2007.

[41] L. R. Ray, “Nonlinear state and tire force estimation for advanced vehicle control,” IEEE Transactions on Control System Technology, vol. 3, no. 1, pp. 117-124, 1995.

[42] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. Hoboken, NJ: Wiley-Interscience, 2001.

[43] B. Chen and H. Peng, “A real-time rollover threat index for sports utility vehicles,” in Proc. American Control Conference, San Diego, CA, 1999, pp. 1233-1237.

[44] W. E. Travis, R. J. Whitehead, D. M. Bevly, and G. T. Flowers, “Using scaled vehicles to investigate the influence of various properties on rollover propensity,” in Proc. American Control Conference, Boston, MA, 2004, pp. 3381-3386.

[45] M. E. Greene and V. S. Trent, “A predictive rollover sensor,” SAE Paper 2002-01-1605, DOI: 10.4271/2002-01-1605, 2002.

[46] P. Raksincharoensak, M. Nagai, and M. Shino, “Lane keeping control strategy with direct yaw moment control input by considering dynamics of electric vehicle,” Vehicle System Dynamics Supplement, vol. 44, pp. 192–201, 2006.

[47] J. Yoon and K. Yi, “A rollover mitigation control scheme based on rollover index,” in Proc. American Control Conference, Minneapolis, Minnesota, USA, 2006, pp.

5372-5377.

[48] C. Zhao, W. Xiang, and P. Richardson, “Vehicle lateral control and yaw stability control through differential braking,” in Proc. IEEE ISIE, Montr´eal, Qu´ebec, Canada, 2006, pp.

384-389.

[49] M. Schorn, U. St¨ahlin, A. Khanafer, and R. Isermann, “Nonlinear trajectory following control for automatic steering of a collision avoiding vehicle,” in Proc. American Control Conference, Minneapolis, Minnesota, USA, 2006, pp. 5837-5842.

[50] Y. Hayakawa, R. White, T. Kimura, and G. Naito, “Driver-compatible steering system for wide speed-range path following,” IEEE/ASME Transactions on Mechatronics, vol. 9, no.

3, pp. 544-552, 2004.

[51] J. Wang and R. G. Longoria, “Coordinated vehicle dynamics control with control distribution,” in Proc. American Control Conference, Minneapolis, Minnesota, USA, 2006, pp. 5348-5353.

[52] J. Fredriksson, J. Andreasson and L. Laine, “Wheel force distribution for improved handling in a hybrid electric vehicle using nonlinear control,” in Proc. IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, pp. 4081-4086.

[53] J. Tjønn°as and T. A. Johansen, “Stabilization of automotive vehicles using active steering and adaptive brake control allocation,” IEEE Transactions on Control Systems Technology, vol. 18, no. 3, pp. 545-558, 2010.

[54] O. Mokhiamar and M. Abe, “Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 126, pp. 753-763, 2004.

[55] E. Ono, Y. Hattori, Y. Muragishi and K. Koibuchi, “Vehicle dynamics integrated control for four-wheel-distributed steering and four-wheel distributed traction/braking systems,”

Vehicle System Dynamics, vol. 44, no. 2, pp. 139-151, 2006.

[56] J. Andreasson and T. B¨unte, “Global chassis control based on inverse vehicle dynamics models,” Vehicle System Dynamics Supplement, vol. 44, pp. 321-328, 2006.

[57] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle System Dynamics Supplement, Vol. 21, pp. 1-18, 1993.

[58] H. B. Pacejka and I. J. M. Besselink, “Magic formula tyre model with transient properties,” Vehicle System Dynamics Supplement, vol. 27, no. S1, pp. 234-249, 1997.

[59] W. Norris, Modern Steam Road Wagons. London: Longmans, 1906, pp. 63–67.

[60] A. Toselli, and O. Widlund, Domain Decomposition Methods-Algorithms and Theory.

Springer, Berlin, 2005.

[61] F. Riesz, and B.Sz.-Nagy, Functional Analysis. New York, 1953.

[62] H. K. Khalil, Nonlinear Systems, 3rd edition. Prentice Hall, 2000.

[63] W. Rudin, Principles of Mathematical Analysis, 3rd edition. McGraw-Hill, 1985.

[64] W. H. Hundsdorfer, and J. G. Verwer, “Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems,” Mathematics of Computation, vol. 53, no. 187, pp. 81-101, 1989.

[65] Q. Xia, M. Rao, Y. Ying, and S. X. Shen, “A New State Estimation Algorithm - Adaptive Fading Kalman Filter,” in Proc. IEEE Conference on Decision and Control, Tucson, AZ, 1992, pp. 1216-1221.

[66] C. Hu, W. Chen, Y. Chen, and D. Liu, “Adaptive Kalman Filtering for Vehicle Navigation,” Journal of Global Positioning Systems, vol. 2, no. 1, pp. 42-47, 2003.

[67] M. Vidyasagar, Nonlinear System Analysis. Englewood Cliffs, NJ: Prentice–Hall, 1993.

[68] C.-F. Kao, and T.-L. Chen, “Design and Analysis of an Orientation Estimation System Using Coplanar Gyro-Free Inertial Measurement Unit and Magnetic Sensors,” Sensors and Actuators A: Physical, vol. 144, no. 2, pp. 251-262, 2008.

[69] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis. Addison-Wesley, 1994.

[70] R. Pallás-Areny and J. G. Webster, Sensors and Signal Conditioning, 2nd edition. NY:

Wiley-Interscience, 2001, pp. 13.

[71] Septentrio Satellite Navigation, PolaRx2e@OEM, website: http://www.septentrio.co m/products/receivers/polarx2eat-oem

[72] G. Wahba, 1965, “Problem 65-1: A Least Squares Estimate of Satellite Attitude,” SIAM Review, vol. 7, no. 3, p. 409.

[73] S. Andrew and M. Wu, “Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring,” Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 706-723, 2007.

[74] A. Leick, GPS Satellite Surveying, Hoboken, NJ: John Wiley & Sons, 2004.

[75] R. C. Hibbeler, Engineering Mechanics: Dynamics, 12nd edition. NJ: Prentice-Hall, 2009.

[76] A. K. Singh and J. Hahn, “Determining optimal sensor locations for state and parameter estimation for stable nonlinear systems,” Industrial and Engineering Chemistry Research, vol. 44, pp. 5645-5659, 2005.

[77] A. Nahvi, J.M. Hollerbach, and V. Hayward, “Calibration of a parallel robot using multiple kinematic closed loops,” in Proc. IEEE International Conference on Robotics and Automation, 1994, vol. 1, pp. 407-412.

[78] Signal-to-noise ratio, website: http://en.wikipedia.org/wiki/Signal-to-noise_ratio

[79] Epson Toyocom, XV-8000, website: http://www.epsontoyocom.co.jp/english/gyroport al/product_xv8000series.html

[80] Z. H. Weng, “Vehicle trajectory following and rollover prevention control systems using differential wheel torques,” M.A. Thesis, Department Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan.

[81] R. L. Rardin, Optimization in Operations Research. NJ: Prentice-Hall, 1998.

[82] E. K. P. Chong and S. H. ˙Zak, An Introduction to Optimization. NY: Wiley-Interscience, 2001.

[83] Texas Instruments, TM320CF28xx Series, website: http://focus.ti.com/mcu/docs/mcu prodoverview.tsp?sectionId=95&tabId=1531&familyId=916

[84] A. Porcel, P. Laurence, M. Basset, and G. L. Gissinger, “Tyre model for vehicle simulation: overview and real time solution for critical situations,” in Proc. IEEE International Conference on Control Applications, Mexico City, Mexico, 2001, pp.

817-822.

[85] H. Dugoff, P. S. Fancher, and L. Segel, “An analysis of tire traction properties and their influence on vehicle dynamic performance,” SAE Paper 700377, Feb. 1970.

 

 

附錄 A:擴增卡曼濾波器

擴增卡曼濾波器[42]可以間接從帶有雜訊的量測值來獲得系統狀態,尤其對於雜訊 來源為高斯雜訊時,卡曼濾波器可以得到最小化的均方誤差(Mean Square Error)。然 而卡曼濾波器僅適用於線性系統,因而為了適用於非線性系統,必須將非線性系統線 性化以套用於卡曼濾波器,此方式的卡曼濾波器又稱為擴增卡曼濾波器(Extended Kalman Filter)。

考慮一個離散的非線性系統:

   

k k

k

k k k

h f

v x y

w x x

1 (A.1)

其中x 表示為系統狀態於時間k t 的數值,k xk1表示為系統狀態於時間t 的數值,k1 y 為k 系統輸出於時間t 的數值,k f

 

 與h

 

 分別為離散且非線性的系統動態方程式與系統輸 出方程式,w 與k v 分別為系統雜訊與輸出雜訊,其被假設為互無關聯的高斯隨機雜k 訊,且其平均值為零,其協方差矩陣(Covariance Matrix)如下所示:

 

 

k

T j k

k T j k

R v v

Q w w

 E

E (A.2)

先對非線性系統作線性化的動作:

 

 

k k

k k

x x x h

x x x f

x H

x A

 



 

 

(A.3)

假如動態系統具有觀察性,針對此系統的卡曼濾波器可以被寫為下式:

 

漸估測錯誤,因此為了克服這個問題,先前文獻[65][66]提出儲存記憶退去技術(Fading Memory Technique)利用退去因子k(Fading Factor)來降低卡曼濾波器對於過往資訊 的權重依賴。其儲存記憶退去技術應用於卡曼濾波器可以寫為下式:

在文檔中 車輛動態估測與預測系統 (頁 167-176)