• 沒有找到結果。

本研究成功製備KSrPO4 :Eu2+、KSrPO4 :Eu3+與 Sr3(Al2O5)Cl2:Eu2+

三個適合近紫外光(NUV, 350~400 nm)激發之螢光粉。針對每一螢光 粉進行(1)材料結構分析、(2)光譜特性分析與(3)可靠度分析以瞭解其 物理或化學之特性,進而於應用面深入探討其實用性。關於本研究之 結論與重要成果如下所示:

一、 鉀鍶磷酸鹽(KSrPO4)

(1) 於鉀鍶磷酸鹽主體晶格中摻雜 Eu,並分別於 5%H2/95%N2及 空氣氣氛中合成純相之 KSrPO4 :Eu2+與 KSrPO4 :Eu3+螢光粉,

並透過結構精算(GSAS 軟體),進一步證實所屬空間群為 P n m a,並計算不同摻雜濃度對晶格參數之影響。

(2) 分別討論其光譜特性,摻雜 Eu2+之螢光粉為4f-5d 之寬帶光譜 躍遷,最強放射峰位於 424 nm;摻雜 Eu3+之螢光粉為內層 4f 軌域之 f-f 線性光譜躍遷,最強放射峰位於 610 nm。

(3) 分析摻雜 Eu2+螢光粉之光衰行為,發現於濃度為0.005 時與其 濃度淬滅現象相符。分析摻雜Eu3+螢光粉之濃度淬滅、量子效 率與反對稱比,此三種數據發現於濃度為0.03 時具一致性。

(4) 於 CIE 座標圖上,將 Eu2+與Eu3+螢光粉分別與商用之BAM 與 Y2O3螢光粉相比,其色純度皆與商用之螢光粉相同。

(5) 首度於 KSrPO4 :Eu3+觀察於空氣燒結氣氛中,具 Eu3+ÆEu2+此 一機制,並探究不同摻雜濃度對於Eu3+與Eu2+放射特徵峰之消 長關係。

(6) 研究熱對發光強度之光衰行為,發現本研究之主體晶格螢光粉 於不同價數 Eu 摻雜下,與商用螢光粉相比皆具高度熱穩定 性。此一研究成果已發表於應用物理期刊(applied physics letter,

APL)。65

(7) 針對兩研究之磷酸鹽螢光粉進行耐濕度測試,經 XRD、PL 與 SEM 結果分析得其抗濕程度佳,介於極佳之 YAG 與較差之矽 酸鹽間。

(8) 利用 400 nm 之 NUV-LED 搭配本研究螢光粉進行封裝,並量 測其相關參數。通以不同驅動電流發現其具EL 穩定性。

二、 氯鋁酸鍶(Sr3(Al2O5)Cl2)

(1) 氯鋁酸鍶主體晶格中摻雜 Eu,並於 5%H2/95%N2中合成純相 之 Sr3(Al2O5)Cl2:Eu2+螢光粉,並透過結構精算(GSAS 軟體),

進一步證實所屬空間群為 P 21 21 21,並計算不同摻雜濃度對晶 格參數之影響。

(2) 光譜特性方面,摻雜 Eu2+之螢光粉為4f-5d 之寬帶光譜躍遷,

最強放射峰位於 620 nm,於 CIE 座標上其較 YAG 位置紅位 移。

(3) 此螢光粉對熱(室溫Æ300oC)之穩定性差,但仍具回復性。低溫 測試(室溫Æ100 K)方面反而於 100 K 光強度增強程度較大。故 本研究螢光粉於低溫應用時具較佳之發光程度,並於 CIE 座標 圖上觀察其位移。

(4) 利用 400 nm 之 NUV-LED 搭配本研究螢光粉進行封裝,並量 測其相關參數,其中色溫 2200 K 且演色性為 74。通以不同驅 動電流發現其具EL 穩定性。

本 研 究 成 功 利 用 400 nm 之 UV-LED 搭 配 KSrPO4:Eu2+、 Sr3(Al2O5)Cl2:Eu2+與(Ba, Sr)2SiO4:Eu2+螢光粉混合成白光。得此色溫約 4200 K 之暖色系白光且演色性為 85,發光效率約為 8 lm/W。再通以 不同電流測並證實其EL 具穩定性。

參考文獻

1. S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer, Berlin, 1997.

2. E. F. Schubert and J. K. Kim, Science, 2005, 308, 1274-1278.

3. K. Takahashi, N. Hirosaki, R.-J. Xie, M. Harada, K.-i.

Yoshimura and Y. Tomomura, Applied Physics Letters, 2007, 91, 091923-091923.

4. S. Muthu, F. J. P. Schuurmans and M. D. Pashley, IEEE J. Sel.

Top. Quantum Electron, 8, 333-338.

5. T. Nishida, T. Ban and N. Kobayashi, Applied Physics Letters, 2003, 82, 3817-3819.

6. F. A. Ponce and D. P. Bour, Nature, 1997, 386, 351-359.

7. H. H. Robert Juza, Zeitschrift f anorganische und allgemeine Chemie, 1940, 244, 133-148.

8. H. G. Grimmeiss and H. Koelmans, Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie, 1959, 14, 264-271.

9. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Applied Physics Letters, 1986, 48, 353-355.

10. H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Japanese Journal of Applied Physics Part 2-Letters, 1989, 28, L2112-L2114.

11. S. Nakamura, Japanese Journal of Applied Physics Part 2-Letters, 1991, 30, L1705-L1707.

12. S. Nakamura, T. Mukai and M. Senoh, Applied Physics Letters, 1994, 64, 1687-1689.

13. S. Nakamura, T. Mukai and M. Senoh, Journal of Applied Physics, 1994, 76, 8189-8191.

14. S. Nakamura, N. Senoh, N. Iwasa and S. I. Nagahama, Japanese Journal of Applied Physics Part 2-Letters, 1995, 34, L797-L799.

15. J. Han and A. V. Nurmikko, IEEE J. Sel. Top. Quantum Electron., 2002, 8, 289-297.

16. N. K. T. Nishida, physica status solidi (a), 1999, 176, 45-48.

17. T. Nishida, H. Saito and N. Kobayashi, Applied Physics Letters, 2001, 79, 711-712.

18. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O.

Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, IEEE J. Sel. Top. Quantum Electron., 2002, 8, 310-320

19. W. Hao, Z. Xinmin, G. Chongfeng, X. Jian, W. Mingmei and S.

Qiang, IEEE Photonics Technol. Lett., 2005, 17, 1160-1162.

20. W. Zhengliang, L. Hongbin, W. Jing, G. Menglian and S.

Qiang, Applied Physics Letters, 2006, 89, 71921-71923.

21. G. Menglian, C. Yibo, W. Jing and S. Qiang, J. Solid State Chem., 2007, 180, 1165-1170.

22. W. Zhengliang, L. Hongbin, W. Jing, G. Menglian and S.

Qiang, Mater. Res. Bull., 2008, 43, 907-911.

23. S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip and G.

Blasse, Journal of Alloys and Compounds, 1996, 241, 75-81.

24. J. S. Kim, J. Y. Kang, P. E. Jeon, J. C. Choi, H. L. Park and T.

W. Kim, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43, 989-992.

25. J. S. Kim, Y. H. Park, J. C. Choi and H. L. Park,

Electrochemical and Solid State Letters, 2005, 8, H65-H67.

26. J. S. Kim, Y. H. Park, J. C. Choi and H. L. Park, Journal of The Electrochemical Society, 2005, 152, H135-H137.

27. R. J. Xie, N. Hirosaki, M. Mitomo, K. Sakuma and N. Kimura, Applied Physics Letters, 2006, 89.

28. R. J. Xie, N. Hirosaki, H. L. Li, Y. Q. Li and M. Mitomo, Journal of The Electrochemical Society, 2007, 154, J314-J319.

29. G. Bizarri and B. Moine, Journal of Luminescence, 2005, 113, 199-213.

30. Z. H. Zhang, Y. H. Wang, X. X. Li, Y. K. Du and W. J. Liu, Journal of Luminescence, 2007, 122-123, 1003-1005.

31. Y. H. Wang and Z. H. Zhang, Electrochemical and Solid-State Letters, 2005, 8, H97-H99.

32. X. Q. Piao, T. Horikawa, H. Hanzawa and K. Machida, Applied Physics Letters, 2006, 88, 161908-161910

33. R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu and M. Mitomo, Chemistry of Materials, 2006, 18, 5578-5583.

34. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima and H. Yamamoto, Electrochemical and Solid State Letters, 2006, 9, H22-H25. Proceedings of the Royal Society of London Series B-Biological Sciences, 1983, 220, 115-130.

38. http://en.wikipedia.org/wiki/Image:PlanckianLocus.png 39. C. I. del'Eclairage, in Proc. CIE 11th Session, Paris, 1948.

40. R. C. Ropp, Luminescence and the Solid State, Elservier, Amsterdam, 2004.

41. G. H. Dieke and R. A. Satten, American Journal of Physics, 1970, 38, 399-400.

42. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, John Wiley & Sons. Inc 1968.

43. D. A. Skoog, F. J. Holler and T. A. Niemen, Principles of instrumental analysis, Harcourt Brace & Company, Orlando, 1998.

44. J. Franck, Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre, 1926, 120, 144-156.

45. E. Condon, Physical Review, 1926, 28, 1182-1201.

46. G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer, Berlin Heidelberg, 1994.

47. J. R. Lakowicz, Principle of Fluorescence Spectroscopy, Springer, Singapore, 2006.

48. W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, CRC Press, Boca Raton, 2006.

49. J. A. Deluca, Journal of Chemical Education, 1980, 57, 541-545.

50. S. Kuboniwa, H. Kawai and T. Hoshina, Japanese Journal of Applied Physics, 1980, 19, 1647-1653.

51. E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, Cambridge, U.K., 2006.

52. Y. S. Fran and T. Y. Tseng, Journal of Physics D-Applied

Physics, 1999, 32, 513-517.

53. K. Y. Jung, D. Y. Lee, Y. C. Kang and S. Bin Park, Korean Journal of Chemical Engineering, 2004, 21, 1072-1080.

54. W. N. Wang, W. Widiyastuti, T. Ogi, I. W. Lenggoro and K.

Okuyama, Chemistry of Materials, 2007, 19, 1723-1730.

55. Ⅲ. William David Collins, M. R. Krames, G. J. Verhoecks and N. J. M. V. Leth, US Patent No.6576488 (Jun. 10, 2003)

56. 林群哲, 台灣大學碩士論文, 台北, 民 96.

57. S. Erdei, F. W. Ainger, D. Ravichandran, W. B. White and L. E.

Cross, Material Letter, 1997, 30, 389-393.

58. H. G. Jenkins, A. H. McKeag and P. W. Ranby, Journal of The Electrochemical Society, 1949, 96, 1-12.

59. A. A. Setlur, A. M. Srivastava, H. A. Comanzo and D. D.

Doxsee, GE, 2004.

60. S. H. M. Poort, W. Janssen and G. Blasse, Journal of Alloys and Compounds, 1997, 260, 93-97.

61. K. S. Sohn, Y. Y. Choi, H. D. Park and H. G. Choi, Journal of The Electrochemical Society, 2000, 147, 2375-2379.

62. H. Lai, A. Bao, Y. M. Yang, Y. C. Tao, H. Yang, Y. Zhang and L. L. Han, Journal of Physical Chemistry C, 2008, 112, 282-286.

63. R. P. Rao, Journal of The Electrochemical Society, 2003, 150, H165-H171.

64. Z. C. Wu, J. Shi, J. Wang, M. L. Gong and Q. Su, J. Solid State Chemistry, 2006, 179, 2356-2360.

65. Y.-S. Tang, S.-F. Hu, C. C. Lin, N. C. Bagkar and R.-S. Liu, Applied Physics Letters, 2007, 90, 151108-151108-3.

66. T.-S. Chan, R.-S. Liu and I. Baginskiy, Chemistry of Materials, 2008, 20, 1215-1217.

67. Y. Huang, W. Kai, Y. Cao, K. Jang, H. S. Lee, I. Kim and E.

Cho, Journal of Applied Physics, 2008, 103, 053501-053507.

68. J. S. Nagpal, S. V. Godbole, G. Varadharajan and A. G. Page, Radiation Protection Dosimetry, 1998, 80, 417-422.

69. P. Yang, G. Q. Yao and J. H. Lin, Inorganic Chemistry Communications, 2004, 7, 302-304.

70. X. Zhang and X. Liu, Journal of The Electrochemical Society, 1992, 139, 622-625.

71. A. Ellens, F. Jermann, F. Kummer, M. Ostertag and F.

Zwaschka, 2003.

72. Z. G. Xia, Q. Li and J. Y. Sun, Material Letter, 2007, 61, 1885-1888.

73. D. R. Lide, Handbook of Chemistry and Physics, CRC Press, 1991.

74. 吳泰伯 與 許樹恩, X-光繞射原理與材料結構分析, 國科會 精儀中心, 台北, 民 82.

75. B. D. Cullity and S. R. Stock, Elements of X-ray diffraction, Prentice Hall, New Jersey, 2001.

76. http://www.ndl.org.tw/ndl2006/department/nmlab/device_fesem.html 77. K. D. Mielenz, Optical Radiation Measurement, Academic

Press, New York, 1982.

78. A. H. Kitai, Solid State Luminescence, Chapman & Hall, New York, 1993.

79. H. F. W. R. H. F. John C. de Mello, Advanced Materials, 1997, 9, 230-232.

80. A. P. M. L.-O. Palsson, Advanced Materials, 2002, 14, 757-758.

81. L. Porres, A. Holland, L. O. Palsson, A. P. Monkman, C. Kemp and A. Beeby, Journal of Fluorescence, 2006, 16, 267-272.

82. P. Ganguly, N. Shah, M. Phadke, V. Ramaswamy and I. S.

Mulla, Physical Review B, 1993, 47, 991.

83. C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen and B. M. Cheng, Chemistry of Materials, 2007, 19, 3278-3285.

84. J. Yang, Z. W. Quan, D. Y. Kong, X. M. Liu and J. Lin, Crystal

Senna, Applied Physics Letters, 2000, 76, 1549-1551.

88. B. S. Tsai, Y. H. Chang and Y. C. Chen, Electrochemical and Solid State Letters, 2005, 8, H55-H57.

89. 蔡濱祥, 成功大學碩士論文, 台南, 民 94.

90. F. Shi, J. Meng, Y. Ren and Q. Su, Journal of Physics and Chemistry of Solids, 1998, 59, 105-110.

91. B. R. Judd, Physical Review, 1962, 127, 750-&.

Journal of Physical Chemistry C, 2007, 111, 16601-16607.

96. E. W. J. L. Oomen and A. M. A. van Dongen, Journal of Non-Crystalline Solids, 1989, 111, 205-213.

97. D. L. Dexter and J. H. Schulman, Journal of Chemical Physics, 1954, 22, 1063-1070.

98. G. Blasse, Philips Res. Rep., 1969, 24, 131.

99. G. Blasse, Progress in Solid State Chemistry, 1988, 18, 79-171.

100. D. R. Vij, Luminescence of solid, Plenum Press, New York, 1998.

101. M. Inokuti and F. Hirayama, The Journal of Chemical Physics, 1965, 43, 1978-1989.

102. Y. Y. Choi, K. S. Sohn, H. D. Park and S. Y. Choi, Journal of Materials Research, 2001, 16, 881-889.

103. Y. Nakanishi, A. Wakahara, H. Okada, A. Yoshida, T. Ohshima, H. Itoh, physica status solidi (c), 2003, 0, 461-464.

104. T. Fujiwara, A. Wakahara, Y. Nakanishi, A. Yoshida, T. Oshima T. Kamiya, physica status solidi (c), 2005, 2, 2805-2808.

105. M. Y. Peng, Z. W. Pei, G. Y. Hong and Q. Su, Chemical Physics Letters, 2003, 371, 1-6.

106. M. Y. Peng, Z. W. Pei, G. Y. Hong and Q. Su, Journal of Materials Chemistry, 2003, 13, 1202-1205.

107. U. Madhusoodanan, M. T. Jose and A. R. Lakshmanan, Radiation Measurements, 1999, 30, 65-72.

108. Z. Pei, Q. Su and J. Zhang, Journal of Alloys and Compounds, 1993, 198, 51-53.

109. I. Tle, P. Klis and V. Kronghauz, Journal of Luminescence, 1979, 20, 343-347.

110. A. Nag and T. R. N. Kutty, Journal of Materials Chemistry, 2004, 14, 1598-1604.

111. J. Y. Tsao, Circuits and Devices Magazine, IEEE, 2004, 20, 28-37.

112. 劉如熹、紀喨勝, 紫外光發光二極體用螢光粉介紹, 全華科 技圖書公司, 台北, 民 92.

113. J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi and H. L. Park, Solid State Communications, 2005, 133, 445-448.

114. Y. P. Varshini, Physica, 1967, 34, 149.

115. H. Yamamoto, in Phosphor global summit, Scottsdale, Arizona, USA, 2003.

116. M. Zachau, T. Fiedler and F. Jermann, in Phosphor global summit, Osram, San Diego, California USA, 2006.