• 沒有找到結果。

本 研 究 利 用 密 度 泛 函 數 理 論 B3LYP 和 B3PW91 配 合 不 同 基 底 函 數 6-311++G(d,p) 、 6-311++G(2d,p) 、 6-311++G(3d,p)、 cc-pVTZ 、 aug-cc-pVTZ 及 CCSD(T)計算方法搭配 6-311++G(d,p)、aug-cc-pVTZ 的基底函數等十二種計算方 法,來計算硒化氫分子、正離子與負離子的平衡結構、振動頻率、絕熱游離能和 電子親和力。以本研究室所發展的方法計算法蘭克-康登因子,再利用法蘭克-

康登因子來模擬硒化氫的光電子光譜,並與實驗的光電子光譜進行比對。

在平衡結構的計算中,將硒化氫分子、離子的結構與實驗值相比較,發現鍵 長與實驗值的差異小於2 pm,鍵角不大於 0.5∘,接近實驗數值;當硒化氫分子 (H2Se)電離成正離子基態 H2Se(X~2B1)時的鍵長、鍵角變化不大,顯示其結構並無 太大改變。但是電離成正離子激發態H2Se時鍵長、鍵角則會產生劇烈的變化。

在振動頻率上,硒化氫分子有三個振動模式,與實驗值比對,1到3所得之 計算結果,皆與實驗數值相近,而且差異都在可以接受的範圍內。本研究計算出 正離子H2Se(X~2B1)、H2Se(A~2A1)、H2Se(B~2B2)與負離子 H2Se的振動頻率。在 正離子方面,除了 H2Se(B~2B2)狀態之外,計算結果與實驗值差異都很小,而負 離子尚無實驗數據可以比對,本研究可說是H2Se首次的研究報告。

在絕熱游離能和電子親和力的計算上,我們發現絕熱游離能的計算,游離能 越小的狀態與實驗值越接近,以 CCSD(T)方法計算 H2Se → H2Se(X~2B1)+e、 H2Se → H2Se (A~2A1)+e、H2Se → H2Se(B~2B2)+e的絕熱游離能差距為 0.036eV、-0.058eV、-0.985eV,除了正離子激發態 H2Se(B~2B2)狀態外,其餘

與實驗值的誤差都很小。

在光譜的模擬上,本研究利用計算所得之法蘭克-康登因子模擬分子電離成 正離子,以及負離子脫電子形成分子的光電子光譜。其中H2Se 從分子電離成 H2Se

(X~2B1)、H2Se(A~2A1)以及H2Se(B~2B2)的模擬光譜整體外形十分一致,而與實驗 光譜的譜相也大多相似。

最後,關於硒化氫負離子 H2Se目前尚無實驗數據可以進行比對,而本研究 數據可以做為日後研究者的參考依據。

參考文獻

[1] Jia-Lin Chang. A new formula to calculate Franck–Condon factors for displaced and distorted harmonic oscillators. J. Mol. Spectrosc. 2005, 232, pp 102-104.

[2] Jia-Lin Chang; Chih-Wen Tsao. Ab initio calculations of excited states of vinyl bromide. Chem. Phys. Lett. 2006, 428, pp 23-27.

[3] Jia-Lin Chang. A new method to calculate Franck–Condon factors of multidimensional harmonic oscillators including the Duschinsky effect. J. Chem.

Phys. 2008, 128, 174111.

[4] Cheng-Luen Lee; Sin-Hua Yang; San-Yu Kuo; Jia-Lin Chang. A general formula of two-dimensional Franck–Condon integral and the photoelectron spectroscopy of sulfur dioxide. J. Mol. Spectrosc. 2009, 256, pp 279-286.

[5] Jia-Lin Chang; Shiuh-Tsuen Huang; Chiing-Chang Chen; Ting-Ting Yang;

Chien-Cheng Hsiao; Hsiu-Yuan Lu; Cheng-Luen Lee. Theoretical calculations of C2v excited states of SO2+. Chem. Phys. Lett. 2010, 486, pp 12-15.

[6] E. D. Palik; Robert A. Oetjen. The pure rotational spectrum of H2Se in the far infrared spectral region. J. Mol. Spectrosc. 1957, 1, pp 223-238.

[7] R. A. Hill; T. H. Edwards. Near infrared spectrum of hydrogen selenide. J. Mol.

Spectrosc. 1964, 14, pp 203-220.

[8] P.G. Sennikov; D.A. Raldugin; V.E. Shkrunin; K.G. Tokhadze. Vibrational spectra of liquefied high-purity hydrogen sulphide, hydrogen selenide and their dilute water solutions. J. Mol. Struct. 1990, 219, pp 203-208.

[9] Kozin I. N.; Klee S.; Jensen P.; Polyansky O. L.; Pavlichenkov I. M. The Far-Infrared Fourier Transform Spectrum of H2Se. J. Mol. Spectrosc. 1993, 158, pp 409-422.

[10] Paul Helminger; Frank C. De Lucia. The ground state rotational spectrum of H2Se: Weighted microwave-infrared analysis. J. Mol. Spectrosc. 1975, 58, pp 375-383.

[11] J. Delwiche; P. Natalis; J.E. Collin. High resolution photoelectron spectrometry of H2S and H2Se. J. Mass Spectrom. Ion Phys. 1970, 5, pp 443-455.

[12] A.W. Potts; W.C. Price.  Photoelectron Spectra and Valence Shell Orbital Structures of Groups V and VI Hydrides. Proc. R. Soc. London A 1972, 326, pp 181-197.

[13] Kurt Börlin; Martin Jungen; Leif Karlsson and; Rein Maripuu. Photoionization of H2Se: high-resolution and threshold photoelectron spectra. Chem. Phys. 1987, 113, pp 309-320.

[14] C. Mayhew; M. A. Baig ; J. P. Connerade. Rydberg transitions in the H2Se molecule. J. Phys. B: At. Mol. Phys. 1983, 16, pp 757-763.

[15] J. M. Hollas; Z. R. Lemanczyk. Rydberg transitions of H2Se : A rotational contour analysis of the 148.3 nm band. J. Mol. Spectrosc. 1977, 66, pp 79-86.

[16] Itaru Gamo. Calculation of the centrifugal distortion constants and inertia defects of H2S, D2S, H2Se, and D2Se, introducing the influence of anharmonicity. J. Mol.

Spectrosc. 1969, 30, pp 216-231.

[17] J. Müller; L. J. Saethre; O. Gropen. Molecular structure and photoelectron spectra of H2S, H2Se, and H2Te. Effective core potential calculations on ground and valence ionic states. Chem. Phys. 1983, 75, pp 395-404.

[18] Foo-Tim Chau; Edmond Pak-Fai Lee; De-Chao Wang. Theoretical Study of the Vibrational Structure of the He I Photoelectron Spectrum of H2Se. J. Phys. Chem.

A 1997, 101 , pp 1603-1608.

[19] O.N. Ulenikov; E.S. Bekhtereva; N.A. Sanzharov; Per Jensen. A refined potential energy function for the electronic ground state of H2Se. J. Mol. Spectrosc. 2004, 227, pp 1-12.

[20] A. M. Mebel; M. Hayashi; K. K. Liang; S. H. Lin. Ab Initio Calculations of Vibronic Spectra and Dynamics for Small Polyatomic Molecules: Role of Duschinsky Effect. J. Phys. Chem. A 1999, 103, pp 10674-10690.

[21] J. Franck. Trans. Faraday Soc. 1925, 21, 536.

[22] E. Condon. Phys. Rev. 1926, 28, 1182.

[23] E. Condon. Phys. Rev. 1928, 32, 858.

[24] Flaud J. M.; Camypeyret C.; Burger H.; Willner H. High-Resolution Analysis of

the ν2, 2ν2, ν1, and ν3 Bands of H280Se. J. Mol. Spectrosc. 1993, 161, pp 157-169.

[25] Flaud J. M.; Camypeyret C.; Arcas P.; Burger H.; Willner H. H280Se: High Resolution Study of the 3ν2, ν1 + ν2, and ν2 + ν3 Bands and Determination of Equilibrium Rotational Constants and Structure. J. Mol. Spectrosc. 1994, 167, pp 383-399.

相關文件