• 沒有找到結果。

The proposed time processing circuit specifications can be further improved to fit more accurate mixed-mode circuit design requirements. They are discussed as follows:

For the VTC circuit proposed in chapter 3, suggested to add an offset cancellation circuit in load-tuning circuit to improve the input dynamic range. Moreover, the mismatch of dual-delay lines also need to be taken into account if more accurate VTC design is needed. In addition to the mismatch effect, temperature variation also affect the transfer characteristic of VTC. Added an offset current that is proportional to the temperature variation in VREF generator circuit is good for temperature compensation.

At last, the comparator unit of the flash TDC also needs to be calibrated to ensure a

more accurate time delay between two RC-inverter paths of the comparator unit.

Bibliography

[1] G.W. Roberts and M.Ali-Bakhshian, ―A brief introduction to time-to-digital and digital-to-time converters,‖ IEEE Trans. Circuit Syst. II: Express Brief, vol. 57, no. 3, pp. 153–157, Mar. 2010.

[2] S.-K. Lee et al., ―A 1GHz ADPLL with a 1.25ps minimum-resolution sub-exponent TDC in 0.18μm CMOS,‖ in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig.

Tech. Papers, pp.482-483, Feb. 2010.

[3] Y.-J. Min, A. Abdullah, H-K. Kim, and S-W. Kim, ―A 5-bit 500-MS/s time domain flash ADC in 0.18µm CMOS,’’ IEEE Int. Sym. on Integrated Circuits 2011,

pp.336-339, Dec. 2011.

[4] L.-J. Chen, and S.-I. Liu, ―A 10-bit 40MS/s time-domain two-step ADC with short calibration time,‖ IEEE Trans. Circuit Syst. II: Express Brief, vol. 63, no. 2, pp.

126–130, Feb. 2016.

[5] K. A. Townsend et al., ―A fine-resolution time-to-digital converter for a 5GS/s ADC,’’ in Proceedings of the IEEE Int. Sym. on Circuits and Systems

2010(ISCAS),pp.3024-2027, May.2010.

[6] Y.-H. Kim, and S. Cho, ―A time-domain flash ADC immune to voltage controlled

delay line non-linearity,’’ IEEE Int. Conf. on ASIC 2011, pp.469-471, Oct. 2011.

[7] M. Z. Straayer, and M. H. Perrott, ―A 12-bit, 10-MHz bandwidth, continuous-time

∆ ADC with a 5-bit, 950-MS/s VCO-based quantizer,‖ IEEE J. Solid-State Circuits,

vol. 43, no. 4, pp. 805–814, Apr. 2008.

[8] M. Park, and M. Perrott, ―A 0.13µm CMOS 78dB SNDR 87mW 20MHz BW CT

∑ ADC with VCO-based integrator and quantizer,‖ in Proc. IEEE Int. Solid-State

Circuits Conf. (ISSCC) Dig. Tech. Papers, pp.170-171, Feb. 2009.

[9] V.Kratyuk et al., ―A design procedure for all-digital phase-locked loops based on a charge-pump phase-locked-loop analogy,‖ IEEE Trans. Circuit Syst. II: Express Brief, vol. 54, no. 3, pp. 247–251,Mar. 2007.

[10] Y. M. Tousi and E. Afshari, ―A miniature 2mW 4 bit 1.2GS/s delay-line-based ADC in 65 nm CMOS,‖ IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2312–2325, Oct.

2011.

[11] G. Li, Y. M. Tousi, A. Hassibi, and E. Afshari, ―Delay-line-based analog-to-digital converters,‖ IEEE Trans. Circuit Syst. II: Express Brief, vol. 56, no. 6, pp. 464–468,

Jun. 2009.

[12] H. Pekau, A. Yousif, and K. W. Haslett, ―A CMOS integrated linear

voltage-to-pulse-delay time converter for time based analog-to-digital converters,’’

in Proceedings of the IEEE Int. Sym. on Circuits and Systems 20006

(ISCAS),pp.2373-2376, May.2006.

[13] T. Oh, H. Venkatram, and U.-K. Moon, ―A time based pipelined ADC using both voltage and time domain information,‖ IEEE J. Solid-State Circuits, vol. 49, no. 4,

pp. 1–11, Apr. 2014.

[14] H. Molaei, and K. Hajsadeghi, ―A 5.3-ps 8-b time to digital converter using a new

gain-reconfigurable time amplifier,‖ IEEE Trans. Circuit Syst. II: Express Brief, vol. 66, no. 3, pp. 352–256, Mar. 2019.

[15] C.-C. Chen, P. Chen, and C.-S. Hwang, ―A precise cyclic CMOS time-to-digital converter with low thermal sensitivity,‖ IEEE Trans. Nuclear Science, vol. 52, no.

4, pp. 834–838, Aug. 2005.

[16] K. Ando, T. Kato, S. Saikatsu, and A. Yasuda, ―A high precision vernier type

delta-sigma time to digital converter,‖ Proceedings of the 24th Int. Conf. , pp. 61–

66, Jun. 2017.

[17] H. Molaei, and K. Hajsadeghi, ―A low power high resolution time to digital converter for ADPLL application,‖ IEEE 59th Int. Mid. Sym. on Circuits and

Systems (MWSCAS), pp. 1–4, Oct. 2016.

[18] Y. Xu et al., ―5-bit 5-GS/s noninterleaved time-based ADC in 65-nm CMOS for

radio-astronomy applications,‖ IEEE Trans. VLSI systems, vol. 24, no. 12, pp.

3513–3525, Dec. 2016.

[19] K. Ohhata, ―A 2.3-mW, 1-GHz, 8-bit fully time-based two step ADC using a

high-linearity dynamic VTC,‖ IEEE J. Solid-State Circuits, pp. 1–11, Arp. 2019.

[20] W. EI-Halwagy, P. Mousavi, and M. Hossain, ―A 79dB SNDR, 10MHz BW, 675 MS/s open-loop time-based ADC employing a 1.15ps SAR-TDC,‖ IEEE Asian Solid-State Circuits Conf. , pp. 321–324, Nov. 2016.

[21] W. EI-Halwagy, P. Mousavi, and M. Hossain, ―A 100M-MS/s−5-GS/s, 13−5-bit Nyquist-rate reconfigurable time-domain ADC,‖ IEEE Trans. VLSI systems, vol.

26, no. 10, pp. 1967–1979, Dec. 2018.

[22] M. Oulmane and G. W. Roberts, ―A CMOS time amplifier for femto-second resolutioin timing measurement,‖ IEEE Int. Sym. on Circuits and Systems 2004

(ISCAS), pp. 509–512, May 2004.

[23] A.M. Abas et al., ―Time difference amplifier,‖ Electronics letters, vol. 38, no. 23,

pp. 1437–1438, Nov. 2002.

[24] M. Heo, D. Kwon, and M. Lee, ―Low-power programmable high gain time difference amplifier with regeneration time control,‖ Electronics letters, vol. 50, no.

16, pp. 1129–1131, Jul. 2014.

[25] A.N.M Alahmadi, G. Russell, and A. Yakovlev, ―Time difference amplifier design with improved performance parameters,‖ Electronics letters, vol. 48, no. 10, pp.

562–563, May. 2012.

[26] K. Kim, Y.-H. Kim, W. Yu, and S. Cho, ―A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65nm CMOS using pulse-train time amplifier,‖ IEEE J.

Solid-State Circuits, vol. 48, no. 4, pp. 1–11, Apr. 2013.

[27] T. Nakura, S. Mandai, and K. Asada, ―Time difference amplifier using closed loop gain control,‖ in 2009 IEEE Symp. VLSI circuits, pp. 208–209. Jun. 2009.

[28] B. Kim, H. Kim, and C.H. Kim, ―An 8bit, 2.6ps two-step TDC in 65nm CMOS

employing a switched ring-oscillator based time amplifier,‖ in IEEE Custom Integrated Circuits Conference (CICC) 2015, Sep. 2015.

[29] Y.-H. Seo, J.-S. Kim, H.-J. Park, and J.-Y. Sim, ―A 0.63ps resolution, 11b pipeline TDC in 0.13μm CMOS,‖ in 2011 Symposium on VLSI Circuits-Digest of Technical

Papers, pp. 152–153, Jun. 2011.

[30] Y.-H. Seo, J.-S. Kim, H.-J. Park, and J.-Y. Sim, ―A 1.25 ps resolution 8b cyclic TDC in 0.13µm CMOS,’’ IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 736–743,

Mar. 2012.

[31] M. Lee, and A.A. Abidi, ―A 9 b, 1.25 ps resolution coarse–fine time-to-digital

converter in 90 nm CMOS that amplifies a time residue,‖ in 2007 IEEE Symp.

VLSI circuits, pp. 168–169. Jun. 2007.

[32] T.-K. Jang, J. Kim, Y.-G. Yoon, and S. Cho, ―A highly-digital VCO based analog-to-digital converter using phase interpolator and digital calibration,‖ IEEE Trans. VLSI systems, vol. 20, no. 8, pp. 1368–1372, Aug. 2012.

[33] M. Voelker, S. Pashmineh, J. Hauer, and M. Ortmanns, ―Current feedback

linearization applied to oscillators based ADCs,‖ IEEE Trans. Circuit Syst. I, Reg.

Papers, vol. 61, no. 11, pp. 3066–3074, Nov. 2014.

[34] A. Agnes, E. Bonizzoni, P. Malcovati, and F. Maloberti, ―A 9.4-ENOB 1v 3.8uW 100Ks/s SAR ADC with time doamin comparator,‖ in 2008 IEEE Int. Solid-State

Circuits Conf., pp. 246–247, Feb. 2008.

[35] Y.-C. Lin and H.-W. Tsao, ―A high-speed high-accuracy voltage-to-time difference converter for time domain anaolg-to-digital converters,‖ IEEE Int. Sym. on Circuits and Systems 2015 (ISCAS), pp. 2285–2288, May 2015.

[36] J. G. Maneatis, ―Low-jitter process-independent DLL and PLL based on self-biased techniques,‖ IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723–1732, Nov.

1996.

[37] Y.-C. Lin and H.-W. Tsao, ―A 5-bit 400-MS/s time domain flash ADC in 0.18µm

CMOS,‖ Analog Integrated Circuits and Signal Processing (2020), pp. 369–378,

Feb. 2020.

[38] S. Sheikhaei, S. Mirabbasi, and A. Ivanov, ―A 43mW single channel 4GS/s 4-bit flash ADC in 0.18um CMOS,‖ in IEEE Custom Integrated Circuits Conference

(CICC) 2007, pp.333–336, Sep. 2007.

[39] S. Park,Y. Palaskas, and M. P. Flynn, ―A 4-GS/s 4-bit flash ADC in 0.18um CMOS,‖

IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1865–1872, Sep. 2007.

[40] X. Jiang, Z. Wang, and M. F. Chang, ―A 2GS/s 6b ADC in 0.18um CMOS,‖ in

2003 IEEE Int. Solid-State Circuits Conf., pp. 246–247, Feb. 2003.

[41] Y.-J. Cho, K.-H. Lee, H.-C. Choi, Y.-J. Kim, K.-J. Moon, and S.-H. Lee, ―A dual

channel 6b 1GS/s 0.18um CMOS ADC for ultra-wide band communication systems,‖ in IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), pp. 339–

342, Dec. 2006.

[42] C.-H. Chang, C.-Y. Hsiao, and C.-Y. Yang, ―A 1-GS/s CMOS 6-bit flash ADC with an offset calibrating method,‖ in IEEE Int. Sym. on VLSI -DAT 2008, pp. 232–235,

Apr. 2008.

[43] H.-Y. Lee, I.-H. Wang, and S.-I. Liu, ―A 7-bit 400MS/s sub-ranging flash ADC in 0.18um CMOS,‖ in 2007 IEEE Int. SOC Conf., pp. 11–14, Sep. 2007.

[44]A. R. Macpherson, J. W. Haslett, and L. Belostotski, ―A 5GS/s 4-bit time-based single-channel CMOS ADC for radio astronomy,‖ in Proceedings of the IEEE 2013 Custom Int. Circuits Conf., Sep. 2013.

[45]D. -R. Oh et al., ―A 6-bit 10-GS/s 63-mW 4x TI time-domain interpolating flash ADC in 65-nm CMOS,‖ in 41th European Solid-State Circuits Conf. (ESSCIRC 2015), pp. 323–326, Sep. 2015.

[46] M. Miyahara, et al., ―A 2.2GS/s 7b 27.4mW time-based folding-flash ADC with resistively averaged voltage-to-time amplifiers,‖ IEEE Int. Solid-State Circuits, pp.

388–389, Feb. 2014.

[47]S. Zhu, B. Wu, Y. Cai, and Y. Chiu, ―A 2-GS/s 8-bit non-interleaved time-domain flash ADC based on remainder number system in 65-nm CMOS,‖ IEEE J.

Solid-State Circuits, vol. 53, no. 4, pp. 1172–1183, Apr. 2018.

[48] ON Semiconductor, ―Understanding data eye diagram methodology for analyzing

high speed digital signals,‖ AND9075/D Application note. [Revised June, 2015].

[49] R.Samrai and F. Yuan, ―An overview of design techniques for on-chip

eye-monitors of Gbps data links,‖ Int. Conf. on Image, Vision and Computing (ICIVC), IPCSIT vol.50 (2012).

[50] T. Ellermeyer, U. Langmann, B. Wedding, and W. Pohlmann, ―A 10-Gb/s eye

opening monitor IC for decision-guided adaptation of the frequency response of an optical receiver,‖ IEEE J. Solid-State Circuits, vol. 35,no. 12,Dec. 2000,

pp.1958-1963.

[51] F. Bien et al., ―A 10Gb/s reconfigurable CMOS equalizer employing a transition detector-based output monitoring technique for band-limited serial links,‖ IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp.4538-4547, Dec. 2006.

[52] H. Kim et al., ―An electronic dispersion compensator (EDC) with an analog

eye-opening monitor (EOM) for 1.25 Gb/s gigabit passive optical network (GPON) upstream links,‖ IEEE Trans. Microw. Theory Technol., vol. 55, no. 12, pp. 2942–

2950, Dec.2007.

[53] B. Analui, A. Rylyakov, S. Rylov, M. Meghelli, and A. Hajimiri, ―A 10-Gb/s two-dimensional eye-opening monitor in 0.13-μm standard CMOS,‖ IEEE J.

Solid-State Circuits, vol. 40, no. 12,Dec. 2005, pp.2689-2698.

[54] H. Noguchi et al., ―A 40-Gb/s CDR circuit with adaptive decision-point control based on eye-opening monitor feedback,‖ IEEE J. Solid-State Circuits, vol. 43, no.

12, Dec. 2008, pp.2929-2938.

[55] C. –K. Seong, J. Rhim, and W. –Y. Choi, ―A 10-Gb/s adaptive look-ahead decision feedback equalizer with an eye-opening monitor,‖ IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. 59,no. 4,Apr. 2012, pp.209-213.

[56] A. R. AL-Taee and F. Yuan, ―New 2-D eye-opening monitor for Gb/s serial links,‖

IEEE Trans. VLSI systems, vol. 22, no. 6, Jun. 2014, pp.1209-1218.

[57] A. R. AL-Taee and F. Yuan, ―A 12.5-Gb/s on-chip oscilloscope to measure eye diagrams and jitter histograms of high-speed signals,‖ IEEE Trans. VLSI systems, vol. 22, no. 5, May. 2014, pp.1127-1137.

[58] F. Gerfers et al., ―A 0.2-2 Gb/s 6x OSR receiver using a digitally self-adaptive equalizer,‖ IEEE J. Solid-State Circuits, vol. 43, no. 6, Jun. 2008, pp.1436-1448.

[59] M. Shin et al., ―A 6.4 Gbps on-chip eye opening monitor circuit for signal integrity analysis of high speed channel,‖ IEEE International Symp. on Electromagnetic

Compatibility 2008.

[60] S. Krishnan and S. Pavan, ―A 10 Gbps eye opening monitor in 65nm CMOS,‖

IEEE Int. Symp. On Circuits and Systems (ISCAS) May. 2015 pp.3028-3031.

[61] T. –J. Oh and I. –C. Hwang, ―A 110-nm CMOS -.7-v input transient-enhanced digital low-dropout regulator with 99.98% current efficiency at 80-mA load,‖ IEEE Trans. VLSI systems, vol. 23, no. 5, Jul. 2015, pp.1281-1286.

[62] L. –J. Chen and S. –I. Liu, ―A 12-bit 3.4 MS/s two-step cyclic time-domain ADC in 0.18-μm CMOS,‖ IEEE Trans. VLSI systems, vol. 24, no. 4, Apr. 2016,

pp.1470-1483.

[63] S. Arora et al., ―Inverter circuit with compensation for threshold voltage variations,‖

U.S. Patent 7,834,657 B1 Nov. 16, 2010.

[64] L. Forbes and K.Y. Ahn, ―Threshold voltage compensation circuits for low voltage and low power CMOS integrated circuits,‖ U.S. Patent 6,456,157 B1 Sep. 24,

2002.

[65] A. A. Abidi, ―Phase noise and jitter in CMOS ring oscillators,‖ IEEE J. Solid-State

Circuits, vol. 41, no. 8, Aug. 2006, pp.1803-1816.

[66] Y.-C. Lin and H.-W. Tsao, ―A 10-Gb/s eye-opening monitor circuit for receiver equalizer adaptations in 65-nm CMOS,‖ IEEE Trans. VLSI systems, vol. 28, no. 1, Jan. 2020, pp.23-34.

Publication List

[1] Y.-C. Lin and H.-W. Tsao, ―A 5-bit 400-MS/s time domain flash ADC in 0.18µm CMOS,‖ Analog Integrated Circuits and Signal Processing (2020), pp. 369–378, Feb.

2020.

[2] Y.-C. Lin and H.-W. Tsao, ―A 10-Gb/s eye-opening monitor circuit for receiver

equalizer adaptations in 65-nm CMOS,‖ IEEE Trans. VLSI systems, vol. 28, no. 1, Jan.

2020, pp.23-34.

[3] Y.-C. Lin and H.-W. Tsao, ―A high-speed high-accuracy voltage-to-time difference converter for time domain anaolg-to-digital converters,‖ IEEE Int. Sym. on Circuits and Systems 2015 (ISCAS), pp. 2285–2288, May 2015.

相關文件