• 沒有找到結果。

Chapter 7 Summaries and Future Works

7.2 Future works

Although we have taken a thorough investigation of SEPC effect in contacts with varying EPE, the contrast of contacts is characterized qualitatively only. A suggested future work is the developing of quantization process in contrast, which may be useful in identification of low leakage and high resistance defects.

According to the finding in chapter 6, the p+/n-well junction has been effectively characterized in the proposed method. However, the image contrast and spatial resolution in the n+/p-well junction are inferior to those in p+/n-well junction. In future studies, however, the emphasis should be placed on attempting to studies of n+/p-well junctions for obtaining a complete contrast mechanism for SEPC. Finally, according to the future trends in transistor scaling, one other future work is to apply the proposed in-situ biasing in HeIM, in which a probe size as small as 0.25 nm can be used, realizing HeIM an ideal candidate for nano-scale dopant mapping in the future.

References

[1] J. G. Koomey, S. Berard, M. Sanchez, and H. Wong, "Implications of Historical Trends in the Electrical Efficiency of Computing," Annals of the History of Computing, IEEE, vol. 33, pp. 46-54, 2011.

[2] S. E. Thompson and S. Parthasarathy, "Moore's law: the future of Si microelectronics," Materials Today, vol. 9, pp. 20-25, 2006.

[3] www.intel.com

[4] A. Asenov, S. Kaya, and A. R. Brown, "Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness," Electron Devices, IEEE Transactions on, vol. 50, pp. 1254-1260, 2003.

[5] E. M. Vogel, "Technology and metrology of new electronic materials and devices,"

Nature Nanotechnology, vol. 2, pp. 25-32, 2007.

[6] M. R. Castell, D. A. Muller, and P. M. Voyles, "Dopant mapping for the nanotechnology age," Nature Materials, vol. 2, pp. 129-144, 2003.

[7] S. M. Sze, Semiconductor devices, physics and technology. New York: Wiley, 1985.

[8] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed. Hoboken, N.J.: Y. J. Mii, and C. M. Wu, "A highly scaled, high performance 45 nm bulk logic CMOS technology with 0.242 µm SRAM cell," in Electron Devices Meeting, 2007.

IEDM 2007. IEEE International, 2007, pp. 243-246.

[10] J. H. Lee, Y. S. Huang, and D. H. Su, "Wafer-level failure analysis process flow,"

Electronic Device Failure Analysis, vol. 12, pp. 4-11, 2010.

[11] J. F. Chen, T. Kuen-Shiuan, C. Shiang-Yu, W. Kuo-Ming, and C. M. Liu,

"On-Resistance Degradation Induced by Hot-Carrier Injection in LDMOS Transistors With STI in the Drift Region," Electron Device Letters, IEEE, vol. 29, pp.

1071-1073, 2008.

[12] C. Chih-Chang, J. F. Lin, W. Tahui, T. H. Hsieh, J. T. Tzeng, Y. C. Jong, R. S. Liou, S. C. Pan, and S. L. Hsu, "Physics and Characterization of Various Hot-Carrier Degradation Modes in LDMOS by Using a Three-Region Charge-Pumping Technique," Device and Materials Reliability, IEEE Transactions on, vol. 6, pp.

358-363, 2006.

[13] C. C. Cheng, K. C. Tu, W. Tahui, T. S. Hsieh, J. T. Tzeng, Y. C. Jong, R. S. Liou, S.

C. Pan, and S. L. Hsu, "Investigation of Hot Carrier Degradation Modes in LDMOS by using a Novel Three-Region Charge Pumping Technique," in Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, 2006, pp. 334-337.

[14] Y. C. Yong, J. T. L. Thong, and J. C. H. Phang, "Determination of secondary electron yield from insulators due to a low-kV electron beam," Journal of Applied Physics, vol. 84, pp. 4543-4548, 1998.

[15] J. H. Lee, S. C. Lee, and P. X. Kuo, "Defect Isolation and Characterization in Contacts by Primary Current and Voltage Adjustment," Testing and Failure Analysis (ISTFA), 2001 27th International Symposium on, 2001, pp. 381-384.

[16] H. Sang-Cheol, C. Seong-Jun, C. Jeong-Un, H. Jeong-Uk, and H. Sang-Rok,

"Electrical characterization of contact level PVC (Passive Voltage Contrast) test using a nanoprober," in Physical and Failure Analysis of Integrated Circuits (IPFA),

2010 17th IEEE International Symposium on the, 2010, pp. 1-4.

[17] Reichelt, R., Scanning electron microscopy. In Science of microscopy, Hawkes, P. W.;

Spence, J. C. H., Eds. Springer: New York, 2007 [18] M. Knoll, Naturwissen schaften, 29, 335 (1941)

[19] W. R. Hardy, S. K. Behera, and D. Cavan, "A voltage contrast detector for the SEM,"

Journal of Physics E: Scientific Instruments, vol. 8, pp. 789-793, 1975.

[20] T. J. Aton, Mahant, x, S. S. Shetti, R. J. Gale, Bennett, M. H. Lilley, M. G. Harward, C. A. Pico, and T. L. Weaver, "Testing integrated circuit microstructures using charging induced voltage contrast," Journal of Vacuum Science & Technology B:

Microelectronics and Nanometer Structures, vol. 8, pp. 2041-2044, 1990.

[21] S. S. Mahant-Shetti, T. J. Aton, R. J. Gale, and M. H. Bennett-Lilley, "Microstructure isolation testing using a scanning electron microscope," Applied Physics Letters, vol.

56, pp. 2310-2312, 1990.

[22] T. Sakai, N. Oda, T. Yokoyama, H. Kikuchi, and H. Kitajima, "Defect isolation and characterization in contact array/chain structures by using voltage contrast effect," in Semiconductor Manufacturing Conference Proceedings, 1999 IEEE International Symposium on, 1999, pp. 195-198.

[23] J. Colvin, “A New Technique to Rapidly Identify Gate Oxide Leakage in Field Effect Semiconductors Using a Scanning Electron Microscope,” in Proc. ISTFA, 1990, pp.

331.

[24] H. Seiler, "Secondary electron emission in the scanning electron microscope,"

Journal of Applied Physics, vol. 54, pp. R1-R18, 1983.

[25] M. Sartori, "Contactless testing using EB techniques: an important support to the debug of modern VLSI," in Semiconductor Conference, 1995. CAS'95 Proceedings., 1995 International, 1995, pp. 545-555.

[26] D. Venables and D. M. Maher, "Quantitative two dimensional dopant profiles obtained directly from secondary electron images," Journal of Vacuum Science &

Technology B: Microelectronics and Nanometer Structures, vol. 14, pp. 421-425, 1996.

[27] S. L. Elliott, R. F. Broom, and C. J. Humphreys, "Dopant profiling with the scanning electron microscope: A study of Si," Journal of Applied Physics, vol. 91, pp.

9116-9122, 2002.

[28] T. H. P. Chang and W. C. Nixon, "Electron beam induced potential contrast on unbiased planar transistors," Solid State Electronics, vol. 10, pp.

701-702,IN9-IN10,703-704, 1967.

[29] D. D. Perovic, M. R. Castell, A. Howie, C. Lavoie, T. Tiedje, and J. S. W. Cole,

"Field-emission SEM imaging of compositional and doping layer semiconductor superlattices," Ultramicroscopy, vol. 58, pp. 104-113, 1995.

[30] R. Turan, D. D. Perovic, and D. C. Houghton, "Mapping electrically active dopant profiles by field emission scanning electron microscopy," Applied Physics Letters, vol. 69, pp. 1593-1595, 1996.

[31] C. P. Sealy, M. R. Castell, and P. R. Wilshaw, "Mechanism for secondary electron dopant contrast in the SEM," Journal of Electron Microscopy, vol. 49, pp. 311-321, 2000.

[32] M. Buzzo, M. Ciappa, M. Stangoni, and W. Fichtner, "Two-dimensional dopant profiling and imaging of 4H silicon carbide devices by secondary electron potential contrast," Microelectronics Reliability, vol. 45, pp. 1499-1504, 2005.

[33] W. C. Hsiao, C. P. Liu, and Y. L. Wang, "Secondary emission of strain-induced dopant contrast in the source/drain regions of metal-oxide-semiconductor devices,"

Applied Physics Letters, vol. 88, 2006.

[34] www.eaglabs.com

[35] A. F. Tasch, H. Shin, C. Park, J. Alvis, and S. Novak, "Improved approach to accurately model shallow B and BF2 implants in silicon," Journal of the Electrochemical Society, vol. 136, pp. 810-814, 1989.

[36] C. C. Williams, Two-dimensional dopant profiling by scanning capacitance microscopy vol. 29, 1999.

[37] A. Doukkali, S. Ledain, C. Guasch, and J. Bonnet, "Surface potential mapping of biased pn junction with kelvin probe force microscopy: Application to cross-section devices," Applied Surface Science, vol. 235, pp. 507-512, 2004.

[38] W. D. Rau, P. Schwander, F. H. Baumann, W. Höppner, and A. Ourmazd,

"Two-dimensional mapping of the electrostatic potential in transistors by electron holography," Physical Review Letters, vol. 82, pp. 2614-2617, 1999.

[39] M. A. Gribelyuk, M. R. McCartney, J. Li, C. S. Murthy, P. Ronsheim, B. Doris, J. S.

McMurray, S. Hegde, and D. J. Smith, "Mapping of electrostatic potential in deep submicron CMOS devices by electron holography," Physical Review Letters, vol. 89, pp. 255021-255024, 2002.

[40] M. Barrett, M. Dennis, D. Tiffin, Y. Li, and C. K. Shih, "2-D dopant profiling in VLSI devices using dopant-selective etching: an atomic force microscopy study,"

Electron Device Letters, IEEE, vol. 16, pp. 118-120, 1995.

[41] T. Tamura and S. Adachi, "Anodic etching characteristics of n-type silicon in aqueous HF/KIO 3 solution," Journal of the Electrochemical Society, vol. 154, pp.

H681-H686, 2007.

[42] C. Chel-Jong, S. Tae-Yeon, L. Key-Min, L. Joo-Hyoung, P. Young-Jin, and L.

Hi-Deok, "Abnormal junction profile of silicided p+/n shallow junctions: a leakage mechanism," Electron Device Letters, IEEE, vol. 23, pp. 188-190, 2002.

[43] Yuan-Shih Chen and Jeng-Han Lee, “Defect isolation and characterization in contacts by primary voltage adjustment,” in Proc. ISTFA, 2003, pp. 317

[44] D. Venables, H. Jain, and D. C. Collins, "Secondary electron imaging as a two-dimensional dopant profiling technique: Review and update," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 16, pp.

362-366, 1998.

[45] A. C. Diebold, M. R. Kump, J. J. Kopanski, and D. G. Seiler, "Characterization of two-dimensional dopant profiles: Status and review," Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 14, pp. 196-201, 1996.

[46] M. A. E. Jepson, B. J. Inkson, X. Liu, L. Scipioni, and C. Rodenburg, "Quantitative dopant contrast in the helium ion microscope," EPL, vol. 86, 2009.

[47] M. A. E. Jepson, B. J. Inkson, C. Rodenburg, and D. C. Bell, "Dopant contrast in the helium ion microscope," EPL, vol. 85, 2009.

[48] P. Kazemian, A. C. Twitchett, C. J. Humphreys, and C. Rodenburg, "Site-specific dopant profiling in a scanning electron microscope using focused ion beam prepared specimens," Applied Physics Letters, vol. 88, p. 212110, 2006.

[49] P. T. Liu, J. H. Lee, Y. S. Huan, and D. Su, "Application of secondary electron potential contrast on junction leakage isolation," Applied Physics Letters, vol. 95, 2009.

[50] P. T. Liu and J. H. Lee, "Profiling p+/n-well junction by nanoprobing and secondary electron potential contrast," IEEE Electron Device Letters, vol. 32, pp. 868-870, 2011.

[51] P. T. Liu and J. H. Lee, "Inspection of the Current-Mirror Mismatch by Secondary Electron Potential Contrast With In Situ Nanoprobe Biasing," Electron Device

Letters, IEEE, vol. 32, pp. 1418-1420, 2011.

[52] G. D. Liechty, C. A. Smith, “Multi-Function, Semi-Automatic Sample Preparation for Failure Analysis”, Microelectronics Failure Analysis: Desk Reference 2001 Supplement , pp. 59 2001.

[53] K. W. A. Chee, C. Rodenburg, and C. J. Humphreys, "Quantitative Dopant Profiling in the SEM Including Surface States Microscopy of Semiconducting Materials 2007." vol. 120, A. G. Cullis and P. A. Midgley, Eds., ed: Springer Netherlands, 2008, pp. 407-410.

[54] C.Y. Lin and Jeng-Han Lee, “Enhanced SEM doping contrast on active area,” in Proc.

ISTFA, 2003, pp. 87

[55] C. Jones, Hitachi_S4800_tutorial, Hitachi High Technologies, 2007.

[56] B. Hooghan, Focus Ion Beam-a sample preparation tool, ISTFA tutorial slides, 2010.

[57] www.dcgsystems.com

[58] R. E. Stallcup II, Bit cell pulse characterization, DCG ISTFA Seminar, 2010.

[59] R. A. Oliver, "Advances in AFM for the electrical characterization of semiconductors," Reports on Progress in Physics, vol. 71, p. 076501, 2008.

[60] Y. Martin, C. C. Williams, and H. K. Wickramasinghe, "Atomic force microscope-force mapping and profiling on a sub 100-Å scale," Journal of Applied Physics, vol. 61, pp. 4723-4729, 1987.

[61] J. Colvin, The role of AFM in yield and FA, ISTFA tutorial slides, 2010.

[62] S. Bothra, H. Sur, and V. Liang, "New failure mechanism by corrosion of tungsten in a tungsten plug process," Microelectronics Reliability, vol. 39, pp. 59-68, 1999.

[63] W. T. Chang, T. E. Hsieh, G. Zimmermann, and L. Wang, "Advance static random access memory soft fail analysis using nanoprobing and junction delineation transmission electron microscopy," Journal of Vacuum Science and Technology B:

Microelectronics and Nanometer Structures, vol. 25, pp. 202-207, 2007.

[64] Y. Naitou and N. Ookubo, "Shear-mode scanning capacitance microscope," Applied Physics Letters, vol. 78, pp. 2955-2957, 2001.

[65] A. F. Tasch, H. Shin, C. Park, J. Alvis, and S. Novak, "Improved approach to accurately model shallow B and BF2 implants in silicon," Journal of the Electrochemical Society, vol. 136, pp. 810-814, 1989.

[66] G. S. Higashi, R. S. Becker, Y. J. Chabal, and A. J. Becker, "Comparison of Si(111) surfaces prepared using aqueous solutions of NH 4F versus HF," Applied Physics Letters, vol. 58, pp. 1656-1658, 1991.

[67] Y. Liao, J. Y. Degorce, J. Belisle, and M. Meunier, "2D dopant determination in laser-diffused Si resistors using dopant-selective etching," Journal of the Electrochemical Society, vol. 153, pp. G16-G22, 2006.

[68] C. Spinella, V. Raineri, and S. U. Campisano, "Selective etching of B-doped silicon:

mechanisms and two-dimensional delineation of concentration profiles," Journal of the Electrochemical Society, vol. 142, pp. 1601-1607, 1995.

[69] C. J. M. Eijkel, J. Branebjerg, M. Elwenspoek, and F. C. M. Van de Pol, "A new technology for micromachining of silicon: Dopant selective HF anodic etching for the realization of low-doped monocrystalline silicon structures," Electron device letters, vol. 11, pp. 588-589, 1990.

[70] P. Kazemian, C. Rodenburg, and C. J. Humphreys, "Effect of experimental parameters on doping contrast of Si p-n junctions in a FEG-SEM," Microelectronic Engineering, vol. 73-74, pp. 948-953, 2004.

[71] M. Buzzo, M. Ciappa, J. Millan, P. Godignon, and W. Fichtner, "Two-dimensional dopant imaging of silicon carbide devices by secondary electron potential contrast,"

Microelectronic Engineering, vol. 84, pp. 413-418, 2007.

[72] M. Buzzo, M. Ciappa, and W. Fichtner, "Imaging and dopant profiling of silicon carbide devices by secondary electron dopant contrast," IEEE Transactions on Device and Materials Reliability, vol. 6, pp. 203-212, 2006.

[73] M. Buzzo, M. Ciappa, and W. Fichtner, "Secondary electron potential contrast for dopant profiling of silicon carbide devices," in Proc. ISTFA, 2006, pp. 279

Curriculum Vitae

姓 名: 李正漢 Jeng-Han Lee

性 別: 男

出生日期: 1972 年 01 月 29 日

出 生 地: 金門縣

地 址 : 新竹市三民路 85 號 21F 之 3

學 歷 : 國立金門高中 1987 年 09 月~1990 年 06 月

國立清華大學材料科學工程學系 1990 年 09 月~1994 年 06 月

國立清華大學材料工程研究所碩士班 1994 年 09 月~1996 年 06 月

國立交通大學光電工程研究所博士班 2006 年 09 月~2011 年 11 月

論文題目: 二次電子電壓對比應用於摻雜分佈與缺陷定位之研究

Publication List

A. International Letter:

1. P. T. Liu and J. H. Lee, "Inspection of the Current-Mirror Mismatch by Secondary Electron Potential Contrast With In Situ Nanoprobe Biasing," IEEE Electron Device Letters, vol. 32, pp. 1418-1420, 2011.

2. P. T. Liu and J. H. Lee, "Profiling p+/n-well junction by nanoprobing and secondary electron potential contrast," IEEE Electron Device Letters, vol. 32, pp.

868-870, 2011.

3. P. T. Liu, J. H. Lee, Y. S. Huan, and D. Su, "Application of secondary electron potential contrast on junction leakage isolation," Applied Physics Letters, vol. 95, pp. 122105-3, 2009.

B. International Conference:

1. C. C. Ho, J. H. Lee, “Electrical diagnosis and failure analysis on tree structure circuit” Proceedings of 11th IPFA conference, pp. 197, 2004.

2. Y. S. Chen, J. H. Lee, “ Defect isolation and characterization in contacts by primary voltage adjustment” Proceedings of 29th ISTFA conference, pp. 317, 2003.

3. C. W. Wu, Jeng-Han Lee, “Advanced process defect isolation by dynamic bias condition and MCT camera” Proceedings of 29th ISTFA conference, pp. 256, 2003.

4. C.Y. Lin, J. H. Lee, “Enhanced SEM doping contrast on active area” Proceedings

of 29th ISTFA conference, pp. 87, 2003.

5. J. H. Lee, S. C. Lee, and P. X. Kuo, “Defect isolation and characterization in contacts by primary current and voltage adjustment” Proceedings of 27th ISTFA conference, pp. 381, 2001.

C. International Journal:

1. J. H. Lee, P. T. Liu, “Surface Potential Mapping of p+/n-well Junction by Secondary Electron Potential Contrast with in-situ Nano-probe Biasing”, submitted to Microelectronic Engineering, 2011.

2. J. H. Lee, Y. S. Huang, and D. H. Su, "Wafer-level failure analysis process flow,"

Electronic Device Failure Analysis, vol. 12, pp. 4-11, 2010.

D. Book Chapter:

1. J. H. Lee, Y. S. Huang, D. Su, “Wafer level failure analysis process flow”, Microelectronics Failure Analysis: Desk Reference Fifth Edition, pp.39, 2004.

E. US Patent:

1. Patent Title: Micro probing tip made by micro machine method

Inventor(s): Liu; Mingo; Lee; Jeng-Han Patent number: US 6797528

2. Patent Title: Primary ion or electron current adjustment to enhance voltage contrast,

Inventor(s): Lee; Jeng-Han; Lee; Su-Chen Patent number: US 6573736

3. Patent Title: Poly gate silicide inspection by back side etching

Inventor(s): Chen;Jung-Chin; Lee;Cheng-Han Patent number: US 6905890

4. Patent Title: Top view TEM sample preparation method for active region crystal defect

Inventor(s): Lee; Jeng-Hang Patent number: US 5935870

5. Patent Title: New SRAM layout to relax mechanical stress in STI process

Inventor(s): Wuu; Shou-Gwo; Lee; Jin-Yuan; Yaung; Dun-Nian; Lee; Jeng-Han Patent number: US 6117722

3. 專利名稱: 觀察金屬矽化物之方法 發明人: 陳榮欽; 李正漢

專利證號: TW 127299

4. 專利名稱: 上視型穿透視電子顯微鏡樣品的製備方法 發明人: 李正漢

專利證號: TW 147596

5. 專利名稱: 在記憶體電路中降低機械應力之電路佈局 發明人: 伍壽國; 李進源; 楊敦年; 李正漢

專利證號: TW 117504

相關文件