• 沒有找到結果。

Chapter 9 Conclusions and Recommendations for Future Works

9.2 Recommendations for Future Works

1. More HRTEM images to evidence thickness variation and interfacial layer reaction.

2. Further reduced surface roughness to promote charge-to-breakdown value larger than 10 C/cm2.

3. Alternative high dielectric constant candidates, including AlON, HfSiO and HfSiON, etc.

4. Fully fabricated stacked-gate flash memories with high-κ inter-poly dielectrics and tunnel dielectrics to study the device characteristics, including program/erase speed, retention time and charge loss mechanism.

References

[1] T. Hori, Gate Dielectrics and MOS ULSIs, p. 43.

[2] G. Baccarani, M. R. Wordeman and R. H. Rennard, “Generalized scaling theory and its application to a 1/4 micrometer MOSFET design,” IEEE Trans. Electron Devices, vol. 31, no. 4, p. 452, April 1984.

[3] P. A. Packan, “Device physics: pushing the limits,” Science, vol. 285, p. 2079, 1999.

[4] T. H. Ning, “Silicon technology directions in the new millenmium,” in Proc. Int.

Reliab. Phys. Symp., 2000, p. 1.

[5] M. T. Bohr, “Technology development strategies for the 21st century,” Appl. Surf.

Sci., vol. 100-101, p. 534, July 1996.

[6] Y. Taur, D. Buchanan, W. Chen, D. J. Frank, K. I. Ismail, S.-H. Lo, G. A.

Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind and H.-S. Wong,

“CMOS scaling into the nanometer regime,” in Proc. IEEE, vol. 85, no. 4, p. 486, Apr. 1997.

[7] Y.-C. Yeo, T.-J. King and C. Hu, “Direct tunneling leakage current and scalability of alternative gate dielectrics,” Appl. Phys. Lett., vol. 81, no. 11, p. 2091, Sep.

2002.

[8] H. Hwang, W. Ting, B. Maiti, D. L. Kwong and J. Lee, “Electrical characteristics of ultrathin oxynitride gate dielectrics prepared by rapid thermal oxidation of silicon in N2O,” Appl. Phys. Lett., vol. 57, no. 10, p. 1010, Sep. 1990.

[9] M. Bhat, L. K. Han, D. Wristers, J. Yan, D. L. Kwong and J. Fulford, “Effect of chemical composition on the electrical properties of NO-nitrided SiO2,” Appl.

Phys. Lett., vol. 66, no. 10, p. 1225, Mar. 1995.

[10] S. V. Hattangady, H. Niimi and G. Lucovsky, “Controlled nitrogen incorporation at the gate oxide surface,” Appl. Phys. Lett., vol. 66, no. 25, p. 3495, June 1995.

[11] W. L. Hill, E. M. Vogel, V. Misra, P. K. McLarty and J. J. Wortman, “Low pressure rapid thermal CVD of oxynitride gate dielectrics for N-channel and P-channel MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, no. 1, p. 15,Jan.

1996.

[12] T. Hori, “Nitrided gate-oxide CMOS technology for improved hot-carrier reliability,” Microelectron. Eng., vol. 22, p. 245, 1993.

[13] E. P. Gusev, H.-C. Lu, E. L. Garfunkel, T. Gustafsson and M. L. Green, “Growth and characterization of ultrathin nitrided silicon oxide films,” IBM J. Res.

Develop., vol. 43, no. 3, p. 265, 1999.

[14] M. Fujiwara, M. Takayanagi, T. Shimizu and Y. Toyoshima, “Extending gate dielectric scaling limit by NO oxynitride : design and process issues for sub-100 nm technology,” in IEDM Tech. Dig., 2000, p. 227.

[15] E. Cartier, D. A. Buchanan and G. J. Dunn, “Atomic hydrogen-induced interface degradation of reoxidized-nitrided silicon dioxide on silicon,” Appl. Phys. Lett., vol. 64, no. 7, p. 901, Feb. 1994.

[16] D. M. Brown, P. V. Gray, F. K. Heumann, H. R. Philipp and E. A. Taft,

“Porperties of SixOyNz films on Si,” J. of Electrochem. Soc., vol. 115, p. 311, 1968.

[17] D. A. Buchanan, E. P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim, M. A.

Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N. Bojarczuk, A. Callegari, C. D’Emic, P. Kozlowski, K. Chan, R. J. Fleming, P. C. Jamison, J. Brown and R.

Amdt, “80nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectric for ULSI applications,” in IEDM Tech. Dig., 2000, p. 223.

[18] S.-J. Ding, H. Hu, C. Zhu, M. F. Li, S. J. Kim, B. J. Cho, D. S. H. Chan, M. B.

Yu, A. T. Du, A. Chin and D. L. Kwong, “Evidence and understanding of ALD HfO2-Al2O3 laminate MIM capacitors outperforming sandwich counterparts,”

IEEE Electron Device Lett., vol. 24, no. 10, p. 681, Oct. 2004.

[19] J. C. Wang, S. H. Chiao, C. L. Lee, T. F. Lei, Y. M. Lin, M. F. Wang, S. C. Chen, C. H. Yu and M. S. Liang, “A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film,” J. Appl. Phys., vol. 92, no. 7, p. 3936, Oct. 2002.

[20] B. Tavel, X. Garros, T. Skotnicki, F. Martin, C. Leroux, D. Bensahel, M. N.

Séméria, Y. Morand, J. F. Damlencourt, S. Descombes, F. Leverd, Y. Le-Friec, P.

Leduc, M. Rivoire, S. Jullian and R. Pantel, “High performance 40nm nMOSFETs with HfO2 gate dielectric and polysilicon damascene gate,” in IEDM Tech. Dig., 2002, p. 429.

[21] W. -H. Lee, J. T. Clemens, R. C. Keller and L. Manchanda, “A novel high κ inter-poly dielectric (IPD), Al2O3 for low voltage/high speed flash memories:

erasing in msecs at 3.3V,” in VLSI Tech. Symp. Dig., 1997, p. 117.

[22] Y. Y. Chen, C. H. Chien and J. C. Lou, “High quality Al2O3 IPD with NH3 surface nitridation,” IEEE Electron Device Lett., vol. 24, no. 8, p. 503, Aug.

2003.

[23] Y. Y. Chen, C. H. Chien and J. C. Lou, “Characteristics of the inter-poly Al2O3 dielectrics on NH3-nitrided bottom poly-Si for next-generation flash memories,”

Jpn. J. Appl. Phys., accepted to be published.

[24] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi and H. Tanaka, “Novel multi-bit SONOS type flash memory using a high-κ charge trapping layer,” in VLSI Tech. Symp. Dig., 2003, p.

27.

[25] B. Govoreanu, P. Blomme, J. Van Houdt and K. De Meyer, “Simulation of nanofloating gate memory with high-κ stacked dielectrics,” in Simulation of Semiconductor Processes and Devices, 2003, p. 299.

[26] D.-W. Kim, T. Kim and S. K. Banerjee, “Memory characterization of SiGe quantum dot flash memories with HfO2 and SiO2 tunneling dielectrics,” IEEE Trans. Electron Devices, vol. 50, no. 9, p. 1823, Sep. 2003.

[27] Y. Y. Chen, J. C. Lou, T. H. Perng, C. W. Chen, and C. H. Chien, “The Impact of High-κ Inter-Poly Dielectrics (IPD) on the Programming/Erasing Performances of Stacked-Gate Flash Memories,” in Electron Devices and Materials Symposia, 2003, p. 42.

[28] The International Technology Roadmap for Semiconductors, 2003 ed., Semiconductor Industry Assoc.

[29] L. Faraone and G. Harbeke, “Surface roughness and electrical conduction of oxide/polysilicon interfaces,” J. Electrochem. Soc., vol. 133, no. 7, p. 1410, July 1986.

[30] S. Mori, E. Sakagami, H. Araki, Y. Kaneko, K. Narita, Y. Ohshima, N. Arai and K. Yoshikawa, “ONO inter-poly dielectric scaling for nonvolatile memory applications,” IEEE Trans. Electron Devices, vol. 38, no. 2, p. 386, Feb. 1991.

[31] C. S. Lai, T. F. Lei and C. L. Lee, “The characteristics of polysilicon oxide grown in pure N2O,” IEEE Trans. Electron Devices, vol. 43, no. 2, p. 326, Feb. 1996.

[32] T. M. Pan, T. F. Lei, W. L. Yang, C. M. Cheng and T. S. Chao, “High quality interpoly-oxynitride grown by NH3 nitridation and N2O RTA treatment,” IEEE Electron Device Lett., vol. 22, no. 2, p. 68, Feb. 2001.

[33] K. Yoshikawa, “Research challenges for next decade flash memories,” Int.

Electron Devices and Materials Symposia, 2000, p. 11.

[34] D. Wristers, L. K. Han, T. Chen, H. H. Wang and D. L. Kwong, “Degradation of oxynitride gate dielectric reliability due to boron diffusion,” Appl. Phys. Lett., vol. 68, no. 15, p. 2094, Apr. 1996.

[35] D. Bouvet, P. A. Clivaz, M. Dutoit, C. Coluzza, J. Almeida, G. Margaritondo and F. Pio, “Influence of nitrogen profile on electrical characteristics of furnace- or rapid thermally nitrided silicon dioxide,” J. Appl. Phys., vol. 79, no. 9, p. 7114, May 1996.

[36] Y. Y. Chen, C. H. Chien and J. C. Lou, “Reliability characteristics of sub-3nm nitrided oxides formed by pre-oxidation nitrogen implanted Si substrate and post-oxidation NO-annealing,” submitted to Thin Solid Films.

[37] M. L. Green, D. Brasen, L. Feldman, E. Garfunkel, E. P. Gusev, T. Gustafsson, W.

N. Lennard, H. C. Lu and T. Sorsch, “Thermal routes to ultrathin oxynitrides,” in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, 1998, p. 181.

[38] M. L. Green, D. Brasen, K. W. Evans-Lutterodt, L. C. Feldman, K. Krisch, W.

Lennard, H. T. Tang, L. Manchanda and M. T. Tang, “RTO of silicon in N2O between 800 and 1200oC: incorporated nitrogen and roughness,” Appl. Phys.

Lett., vol. 65, no. 7, p. 848, Aug. 1994.

[39] E. P. Gusev, H. C. Lu, T. Gustafsson, E. Garfunkel, M. L. Green and D. Brasen,

“The composition of ultrathin oxynitrideds thermally grown in NO,” J. Appl.

Phys., vol. 82, no. 2, p. 896, July 1997.

[40] R. I. Hedge, P. J. Tobin, K. G. Reid, B. Maiti and S. A. Ajuria, “Growth and surface chemistry of oxynitride gate dielectric using nitric oxide,” Appl. Phys.

Lett., vol. 66, no. 21, p. 2882, May. 1995.

[41] Z. Q. Yao, “The nature and distribution of nitrogen in silicon oxynitride grown on Si in a nitric oxide ambient,” J. Appl. Phys., vol. 78, no. 5, p. 2906, Sep. 1995.

[42] B. Doyle, H. R. Soleimani and A. Philipossian, “Simultaneous growth of different thickness gate oxides in silicon CMOS processing,” IEEE Electron Device Lett., vol. 16, no. 7, p. 301, July 1995.

[43] C. T. Liu, E. J. Lloyd, Y. Ma, M. Du, R. L. Opila and S. J. Hillenius, “High Performance 0.2 um CMOS with 25A Gate Oxide Grown on Nitrogen Implanted Si Substrates,” in IEDM Tech. Dig., 1996, p. 499.

[44] Y. Tanida, Y. Tamura, S. Miyagaki, M. Yamaguchi, C. Yoshida, Y. Sugiyama and H. Tanaka, “Effect of in-situ nitrogen doping into MOCVD-grown Al2O3 to improve electrical characteristics of MOSFETs with polysilicon gate,” in VLSI Tech. Symp. Dig., 2002, p. 190.

[45] S. Saito, Y. Shimamoto, S. Tsujikawa, H. Hamamura, O. Tonomura, D. Hisamoto, T. Mine, K. Torii, J. Yugami, M. Hiratani, T. Onai and S. Kimura, “Impact of oxygen-enriched SiN interface on Al2O3 gate stack an innovative solution to low-power CMOS,” in VLSI Tech. Symp. Dig., 2003, p. 145.

[46] J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh and J. H. Lee,

“Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique,” J. Appl. Phys., vol. 92, no. 11, p. 6739, Dec.

2002.

[47] B. H. Lee, L. Kang, W. -J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee,

“Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” in IEDM Tech. Dig., 1999, p. 133.

[48] S. J. Lee, H. F. Luan, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts and D. L.

Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” in VLSI Tech. Symp. Dig., 2001, p. 133.

[49] H. Y. Yu, J. F. Kang, J. D. Chen, C. Ren, Y. T. Hou, S. J. Whang, M. -F. Li, D. S.

H. Chan, K. L. Bera, C. H. Tung, A. Du and D. -L. Kwong, “Thermally robust high quality HfN/HfO2 gate stack for advanced CMOS devices,” in IEDM Tech.

Dig., 2003, p. 99.

[50] S. B. Samavedam, L. B. La, J. Smith, S. Dakshina-Murthy, E. Luckowski, J.

Schaeffer, M. Zavala, R. Martin, V. Dhandapani, D. Triyoso, H. H. Tseng, P. J.

Tobin, D. C. Gilmer, C. Hobbs, W. J. Taylor, J. M. Grant, R. I. Hegde, J. Mogab, C. Thomas, P. Abramowitz, M. Moosa, J. Conner, J. Jiang, V. Arunachalam, M.

Sadd, b-Y. Nguyen and B. White, “Dual-metal gate CMOS with HfO2 gate dielectric,” in IEDM Tech. Dig., 2002, p. 433.

[51] Z. H. Liu, H.-J. Wann, P. K. Ko, C. Hu and Y. C. Cheng, “Effects of N2O anneal and reoxidation on the thermal oxide characteristics,” IEEE Electron Device Lett., vol. 13, no. 8, p. 402, Aug. 1992.

[52] P. Pan, “Characteristics of thermal SiO2 films during nitridation,” J. Appl. Phys., vol. 61, no. 1, p. 284, Jan. 1987.

[53] T. Hori, H. Iwasaki and K. Tsuji, “Electrical and physical characteristics of

ultrathin reoxidized nitride oxides prepared by rapid thermal processing,” IEEE Trans. Electron Devices, vol. 36, no. 2, p. 340, Feb. 1989.

[54] G. W. Yoon, A. B. Joshi, J. Kim and D. L. Kwong, “MOS characteristics of NH3 nitrided N2O-grown oxides,” IEEE Electron Device Lett., vol. 14, no. 4, p. 179, Apr. 1993.

[55] T. Ohguro, Y. Okayama, K. Matsuzawa, K. Matsunaga, N. Aoki, K. Kojima, H. S.

Momose and K. Ishimaru, “The impact of oxynitride process, deuterium annealing and STI stress to 1/f noise of 0.11 CMOS,” in VLSI Tech. Symp. Dig., 2003, p. 37.

[56] V. P. Gophnath, A. Kamath, M. Mirabedini, V. Hornback, Y. Le, A. Badowski and W.-C. Yeh, “Impact of the interaction between nitrogen implant and NO anneal on narrow-width transistors,” IEEE Electron Device Lett., vol. 24, no. 2, p.

66, Feb. 2003.

[57] K. J. Yang and Chenming Hu, “MOS capacitance measurements for high-leakage thin dielectrics,” IEEE Trans. Electron Devices, vol. 46, no. 7, p. 1500, July 1999.

[58] K. Yang, Y.-C. King and Chenming Hu, “Quantum effect in oxide thickness determination from capacitance measurement,” in VLSI Tech. Symp. Dig., 1999, p. 77.

[59] M. S. Krishnan, L. Chang, T.-J. King, J. Bokor and Chenming Hu, “MOSFETs with 9 to 13Å thick gate oxides,” in IEDM Tech. Dig., 1999, p. 241.

[60] A. Shanware, J. P. Shiely, H. Z. Massoud, E. Vogel, K. Henson, A. Srivastava, C.

Osburn, J. R. Hauser and J. J. Wortman, “Extraction of the gate oxide thickness of N- and P-Channel MOSFETs below 20Å from the substrate current resulting from valence-band electron tunneling,” in IEDM Tech. Dig., 1999, p. 815.

[61] W. K. Henson, K. Z. Ahmed, E. M. Vogel, J. R. Hauser, J. J. Wortman, R. D.

Venables, M. Xu and D. Venables, “Estimating oxide thickness of tunnel oxides down to 1.4nm using conventional capacitance-voltage measurements on MOS capacitors,” IEEE Electron Device Lett., vol. 20, no. 4, p. 179, Apr. 1999.

[62] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” IEEE Electron Device Lett., vol. 18, no. 5, p. 209, May 1997.

[63] P. T. Lai, J. P. Xu and Y. C. Cheng, “Interface properties of NO-annealed N2O-grown oxynitride,” IEEE Trans. Electron Devices, vol. 46, no. 12, p. 2311, Dec. 1999.

[64] M. K. Mazumder, A. Teramoto, J. Komori, M. Sekine, S. Kawazu and Y.

Mashiko, “Effects of N distribution on charge trapping and TDDB characteristics of N2O annealed wet oxide,” IEEE Trans. Electron Devices, vol. 46, no. 6, p.

1121, June 1999.

[65] R. I. Hegde, B. Maiti and P. J. Tobin, “Growth and film characteristics of N2O and NO oxynitride gate and tunnel dielectrics,” J. of Electrochem. Soc., vol. 144, no. 3, p. 1081, 1997.

[66] T. Ogata, M. Inoue, T. Nakamura, N. Tsuji, K. Kobayashi, K. Kawase, H.

Kurokawa, T. Kaneoka, Y. Ohno and H. Miyoshi, “Impact of nitridation engineering on microscopic SILC characteristics of sub-10-nm tunnel dielectrics,” in IEDM Tech. Dig., 1998, p. 597.

[67] A. Ghetti, E. Sangiorgi, J. Bude, T. W. Sorsch and G. Weber, “Low voltage tunneling in ultra-thin oxides: a monitor for interface states and degradation,” in IEDM Tech. Dig., 1999, p. 731.

[68] P. T. Lai, J. P. Xu and Y. C. Cheng, “A comparison between NO-annealed O2- and N2O-grown gate dielectrics,” in IEEE Proceedings of Electron Devices Meeting, Hong Kong, 1998, p. 36.

[69] B. Maiti, P. J. Tobin, V. Misra, R. I. Hegde, K. G. Reid and C. Gelatos, “High performance 20Å NO oxynitride for gate dielectric in deep sub-quarter micron CMOS technology,” in IEDM Tech. Dig., 1997, p. 651.

[70] J. C. Lee, I.-C. Chen and C. Hu, “Modeling and characterization of gate oxide reliability,” IEEE Trans. Electron Devices, vol. 35, no. 12, p. 2268, Dec. 1988.

[71] R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel and H. E. Maes, “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown,” IEEE Trans. Electron Devices, vol. 45, no. 4, p. 904, Apr. 1998.

[72] J. McPherson, V. Reddy, K. Banerjee and H. Le, “Comparison of E and 1/E TDDB models for SiO2 under long-term/low-field test conditions,” in IEDM Tech. Dig., 1998, p. 171.

[73] Y.-C. King, C. Kuo, T.-J. King and C. Hu, “Sub-5nm multiple-thickness gate

oxide technology using oxygen implantation,” in IEDM Tech. Dig., 1998, p. 585.

[74] M. Togo, K. Noda and T. Tanigawa, “Multiple-thickness gate oxide and dual-gate technologies for high-performance logic-embedded DRAMs,” in IEDM Tech.

Dig., 1998, p. 347.

[75] A. Furukawa, Y. Abe, S. Shimizu, T. Kuroi, Y. Tokuda and M. Inuishi, “Channel engineering in sub-quarter-micron MOSFETs using nitrogen implantation for low voltage operation,” in VLSI Tech. Symp. Dig., 1996, p. 62.

[76] C. T. Liu, Y. Ma, M. Oh, P. W. Diodato, K. R. Stiles, J. R. McMacken, F. Li, C. P.

Chang, K. P. Cheung, J. I. Colonel, W. Y. C. Lai, R. Liu, E. J. Lloyd, J. F. Miner, C. S. Pai, H. Vaidya, J. Frackoviak, A. Timko, F. Klemens, H. Maynard and J. T.

Clemens, “Multiple gate oxide thickness for 2GHz system-on-a-chip technologies,” in IEDM Tech. Dig., 1998, p. 589.

[77] L. K. Han, S. Crowder, M. Hargrove, E. Wu, S. H. Lo, F. Guarin, E. Crabbé and L. Su, “Electrical characteristics and reliability of sub-3nm gate oxides grown on nitrogen implanted silicon substrates,” , in IEDM Tech. Dig., 1997, p. 643.

[78] J. O. Bark and S. W. Kim, “Formation of ultrathin gate oxides with low-dose nitrogen implantation into Si substrates,” IEEE Electronics Lett., vol. 34, no. 19, p. 1887, Sep. 1998.

[79] B. Yu, D.-H. Ju, W.-C. Lee, N. Kepler, T.-J. King and C. Hu, “Gate engineering for deep-submicron CMOS transistors,” IEEE Trans. Electron Devices, vol. 45, no. 6, p. 1253, June 1998.

[80] Q. Xu, H. Qian, Z. Han, G. Lin, M. Liu, B. Chen, C. Zhu and D. Wu,

“Characterization of 1.9- and 1.4nm ultrathin gate oxynitride by oxidation of nitrogen-implanted silicon substrate,” IEEE Trans. Electron Devices, vol. 51, no.

1, p. 113, Jan. 2004.

[81] A. J. Bauer, P. Mayer, L. Frey, V. Haublein and H. Ryssel, “Forming nitrided gate oxides by nitrogen implantation into the substrate before gate oxidation by RTO,” in IEEE Conference on Ion Implantation Technology Proceedings, vol. 1 , p. 22, June 1998.

[82] A. Kamgar, J. T. Clemens, A. Chetti, C. T. Liu and E. J. Lloyd, “Reduced electron mobility due to nitrogen implant prior to the gate oxide growth,” IEEE Electron Device Lett., vol. 21, no. 5, p. 227, May 2000.

[83] MEDICI User’s Manual, Version 2000.4, December 2000, Technology Modeling

Associates, Sunnyvale, CA, USA.

[84] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, no. 3, p. 1785, May 2000.

[85] G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-κ gate dielectrics: current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, p.

5243, May 2001.

[86] P. Cappelletti, C. Golla, P. Olivo and E. Zanoni, Flash Memories, p. 5.

[87] S. Haddad, C. Chang, B. Swaminathan and J. Lien, “Degradation due to hole trapping in Flash memory cells,” IEEE Electron Device Lett., vol. 10, no. 3, p.

117, Mar. 1989.

[88] P. Cappelletti, R. Bez, D. Cantarelli and L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” in IEDM Tech. Dig., 1994, p. 291.

[89] Y. Yamaguchi, E. Sakagami, N. Arai, M. Sato, E. Kamiya, K. Yoshikawa, H.

Meguro, H. Tsunoda and S. Mori, “ONO interpoly dielectric scaling limit for non-volatile memory devices,” in VLSI Tech. Symp. Dig., 1993, p. 85.

[90] J. D. Bude, A. Frommer, M. R. Pinto and G. R. Weber, “EEPROM/flash sub 3.0 V drain-source bias hot carrier writing,” in IEDM Tech. Dig., 1995, p. 989.

[91] S. Ueno, H. Oda, N. Ajika, M. Inuishi and H. Miyoshi, “Optimum voltage scaling methodology for low voltage operation of CHE type flash EEPROMs with high reliability, maintaining the constant performance,” in VLSI Tech. Symp.

Dig., 1996, p. 54.

[92] C. Cobianu, O. Popa and D. Dascalu, “On the electrical conduction in the interpolysilicon dielectric layers,” IEEE Electron Device Lett., vol. 14, no. 5, p.

213, May 1993.

[93] T. One, T. Mori, E. Ajioka and T. Takayashiki, “Studies of thin poly-Si oxides for E and E2PROM,” in IEDM Tech. Dig., 1985, p. 380.

[94] J. C. Lee and C. Hu, “Polarity asymmetry of oxides grown on polycrystalline silicon,” IEEE Trans. Electron Devices, vol. 35, no. 7, p. 1063, July 1988.

[95] L. Faraone, “Thermal SiO2 films on n+ polycrystalline silicon: electrical conduction and breakdown,” IEEE Trans. Electron Devices, vol. 33, no. 11, p.

1785, Nov. 1986.

[96] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A.

Ishitani and T. Okazawa, “A high capacitive-coupling ratio (HiCR) cell for 3 V-only 64 Mbit and future flash memories,” in IEDM Tech. Dig., 1993, p. 19.

[97] M. Kato, T. Adachi, T. Tanaka, A. Sato, T. Kobayashi, Y. Sudo, T. Morimoto, H.

Kume, T. Nishida and K. Kimura, “A 0.4-um2 self-aligned contactless memory cell technology suitable for 256-Mbit flash memories,” in IEDM Tech. Dig., 1994, p. 921.

[98] T. Takeshima, H. Sugawara, H. Takada, Y. Hisamune, K. Kanamori, T. Okazawa, T. Murotani and I. Sasaki, “A 3.3 V single-power-supply 64 Mb flash memory with dynamic bit-line latch (DBL) programming scheme,” in ISSCC Tech. Dig., 1994, p. 148.

[99] Y. Yamauchi, M. Yoshimi, S. Sato, H.Tabuchi, N. Takenaka and K. Sakiyam, “A new cell structure for sub-quarter micron high density flash memory,” in IEDM Tech. Dig., 1995, p. 267.

[100] T. Kobayashi, N. Mastsuzaki, A. Sato, A. Katayama, H. Kurata, A. Miura, T.

Mine, Y. Goto, T. Morimoto, H. Kume, T. Kure and K. Kimura, “A 0.24-um2 cell process with 0.18-um width isolation and 3-D interpoly dielectric films for 1-Gb flash memories,” in IEDM Tech. Dig., 1997, p. 275.

[101] H. Shirai, T. Kubota, I. Honma, H. Watanabe, H. Ono and T. Okazawa, “A 0.54 um2 self-aligned, HSG floating gate cell (SAHF cell) for 256 Mbit flash memories,” in IEDM Tech. Dig., 1995, p. 653.

[102] T. Kitamura, M. Kawata, I. Honma, I. Yamamoto, S. Nishimoto and K. Oyama,

“A low voltage operating flash memory cell with high coupling ratio using horned floating gate with fine HSG,” in VLSI Tech. Symp. Dig., 1998, p. 104.

[103] J.-D. Choi, J.-H. Lee, W.-H. Lee, K.-S. Shin, Y.-S. Yim, J.-D. Lee, Y.-C. Shin, S.-N. Chang, K.-C. Park, J.-W. Park and C.-G. Hwang, “A 0.15 um NAND flash technology with 0.11 um2 cell size for 1 Gbit flash memory,” in IEDM Tech.

Dig., 2000, p. 767.

[104] N. Matsuo and A. Sasaki, “Electrical characteristics of oxide-nitride-oxide films formed on tunnel-structured stacked capacitors,” IEEE Trans. Electron Devices, vol. 42, no. 7, p. 1340, July 1995.

[105] S. Holland, “An oxide-nitride-oxide capacitor dielectric film for silicon strip detectors,” IEEE Trans. Nuclear Science, vol. 42, no. 8, p. 423, Aug. 1995.

[106] C. L. Cha, E. F. Chor, H. Gong, A. Q. Zhang and L. Chan, “Breakdown of

reoxidized nitrided oxide (ONO) in flash memory devices upon current stressing,” in IEEE Electron Devices Meeting, Hong Kong, 1997, p. 82.

[107] S. J. Lee, C. H. Lee, Y. H. Kim, H. F. Luan, W. P. Bai, T. S. Jeon and D. L.

Kwong, “High-κ gate dielectrics for sub-100 nm CMOS technology,” in International Conference on Solid-State and Integrated-Circuit Technology, 2001, p. 303.

[108] C. B. Oh, H. S. Kang, H. J. Ryu, M. H. Oh, H. S. Jung, Y. S. Kim, J. H. He, N. I.

Lee, K. H. Cho, D. H. Lee, T. H. Yang, I. S. Cho, H. K. Kang, Y. w. Kim and K. P.

Suh, “Manufacturable embedded CMOS 6T-SRAM technology with high-κ gate dielectric device for system-on-chip applications,” in IEDM Tech. Dig., 2002, p.

423.

[109] M. Cho, H. B. Park, J. Park, S. W. Lee, C. S. Hwang, G. H. Jang and J. Jeong,

“High-κ properties of atomic-layer-deposited HfO2 films using a nitrogen-containing Hf[N(CH3)2]4 precursor and H2O oxidant,” Appl. Phys.

Lett., vol. 83, no. 26, p. 5503, Dec. 2003.

[110] M. Heyns, S. Beckx, H. Bender, P. Blomme, W. Boullart, B. Brijs, R. Carter, M.

Caymax, M. Claes, T. Conard, S. De Gendt, R. Degraeve, A. Delabie, W.

Deweerdt, G. Groeseneken, K. Henson, T. Kauerauf, S. Kubicek, L. Lucci, G.

Lujan, J. Mentens, L. Pantisano, J. Petry, O. Richard, E. Rohr, T. Schram, W.

Vandervorst, P. Van Doorne, S. Van Elshocht, J. Westlinder, T. Witters, C. Zhao, E. Cartier, J. Chen, V. Cosnier, M. Green, S. E. Jang, V. Kaushik, A. Kerber, J.

Kluth, S. Lin, W. Tsai, E. Young, V. Manabe, Y. Shimamoto, P. Bajolet, H. De Witte, J. W. Maes, L. Date, D. Pique, B. Coenegrachts, J. Vertommen and S.

Passefort, “Scaling of high-κ dielectrics towards sub-1nm EOT,” in VLSI Tech.

Symp. Dig., 2003, p. 247.

[111] A. S. Oates, “Reliability issues for high-κ gate dielectrics,” in IEDM Tech. Dig., 2003, p. 923.

[112] S. K. Kim and C. S. Hwang, “Atomic-layer-deposited Al2O3 thin films with thin SiO2 layers grown by in situ O3 oxidation,” J. Appl. Phys., vol. 96, no. 4, p.

2323, Aug. 2004.

[113] D.-L. Kwong, “CMOS integration issues with high-κ gate stack,” in International Symp. on the Phys. and Failure Analysis of Integrated Circuits, 2004, p. 17.

[114] C. C. Fulton, T. E. Cook, G. Lucovsky and R. J. Nemanich, “Interface

instabilities and electronic properties of ZrO2 on silicon,” J. Appl. Phys., vol. 96, no. 5, p. 2665, Sep. 2004.

[115] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A.

Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D’Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L-Å.

Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta and A. Ajmera,

“Ultrathin high-κ gate stacks for advanced CMOS devices,” in IEDM Tech. Dig., 2001, p. 451.

[116] M. Schumacher and R. Waser, “Curie-von Schweidler behaviour observed in ferroelectric thin films and comparison to superparaelectric thin film materials,”

Integrated Ferroelectrics., vol. 22, no. 1-4, p. 109, 1998.

[117] H. Reisinger, G. Steinlesberger, S. Jakschik, M. Gutsche, T. Hecht, M. Leonhard, U. Schröder, H. Seidl and D. Schumann, “A comparative study of dielectric relaxation losses in alternative dielectrics,” in IEDM Tech. Dig., 2001, p. 267.

[118] J. R. Jameson, P. B. Griffin, A. Agah, J. D. Plummer, H.-S. Kim, D. V. Taylor, P.

C. McIntyre and W. A. Harrison, “Problems with metal-oxide high-κ dielectrics due to 1/t dielectric relaxation current in amorphous materials,” in IEDM Tech.

Dig., 2003, p. 91.

[119] S. Meng, C. Basceri, B. W. Busch, G. Derderian and G. Sandhu, “Leakage mechanisms and dielectric properties of Al2O3/TiN-based metal-insulator-metal capacitors,” Appl. Phys. Lett., vol. 83, no. 21, p. 4429, Nov. 2003.

[120] C.-L. Cha, E.-F. Chor, H. Gong, A. J. Bourdillon, Y.-M. Jia, J.-S. Pan, A.-Q.

Zhang and L. Chan, “Surface smoothing of floating gates in flash memory devices via surface nitrogen and carbon incorporation,” Appl. Phys. Lett., vol. 75, no. 3, p. 355, July 1999.

[121] J. H. Klootwijk, H. van Kranenburg, P. H. Woerlee and H. Wallinga, “Deposited inter-polysilicon dielectrics for nonvolatile memories,” IEEE Trans. Electron Devices, vol. 46, no. 6, p. 1435, July 1999.

[122] M.-H. Cho, Y. S. Rho, H.-J. Choi, S. W. Nam, D.-H. Ko, J. H. Ku, H. C. Kang, D.

Y. Noh, C. N. Whang and K. Jeong, “Annealing effects of aluminum silicate films grown on Si(100),” J. Vac. Sci. Technol. A, vol. 20, no. 3, p. 865, May 2002.

[123] A. Kerber, E. Cartier, R. Degraeve, P. J. Roussel, L. Pantisano, T. Kauerauf, G.

[123] A. Kerber, E. Cartier, R. Degraeve, P. J. Roussel, L. Pantisano, T. Kauerauf, G.