Γ-
-
-/
Investigations of AlGaAs/InGaAsMOS-HEMTs
with Different Shifted Γ-Gate Structures
D9871525
D9818655
D9827010
D9870979
D9871453
/ - -Γ- / 1.2 µm 1 0 0 Å Γ - B ( C ) 0.8 (0.6) µm 0.4 (0.6) µm ( A) Γ- / ( B/ C) IDSS, max (331
mA/mm 339 mA/mm 350 mA/mm) gm,max (115 mS/mm 129mS/mm
137 mS/mm) fT (10.9 GHz 13.3 GHz 14.4 GHz) fmax (19.3 GHz 26.8 GHz 35.3 GHz) NFmin 2.4GHz/ 5.8 GHz (1.5/ 3.1 dB 1.1/ 2.4 dB 0.9/ 2.1 dB) P.A.E. 2.4 GHz/ 5.8 GHz (24.2/ 16.2 % 31.7/ 26.5 % 35/ 28 %) Γ- / Γ- -
-In this work, we have an effective method of the ozone water treatment and shrinking gate length by gamma gate metal. Depositing gate metal across a step undercut between the AlGaAs and the oxide to obtain a reduced gate length of 0.8 (0.6) µm with an additional 0.4 (0.6) µm field plate from a 1.2 µm gate window for the Sample B (Sample C).
Experiment results indicate the following devices DC and microwave characteristics: the maximum saturation drain current density IDSS, max (331, 339 and
350 mA/mm), the maximum extrinsic transconductance gm,max (115, 129 and 137
mS/mm), the unity current gain cut-off frequency fT (10.9 GHz,13.3 GHz and 14.4
GHz), the maximum oscillation frequency fmax (19.3 GHz, 26.8 GHz and 35.3 GHz),
the minimum noise figure NFmin at 2.4/5.8 GHz (1.5/ 3.1 dB, 1.1/ 2.4 dB and 0.9/ 2.1
dB) and the power-added-efficiency P.A.E. at 2.4/5.8 GHz (24.2/ 16.2 %, 31.7/ 26.5 % and 35/ 28 %).
……….… i Abstract ……….………. ii ………. v ……… 1 ……… 3 2-1 pHEMT ………. 3 2-2 pHEMT ………. 3 2-2-1 ……… 3 2-2-2 ……… 4 2-2-3 δ ………. 4 2-2-4 ……… 5 2-2-5 ……… 5 2-2-6 ……… 6 2-3 ……… 6 ……… 7 3-1 ……… 7 3-2 ……… 8 3-2-1 ……… 8 3-2-2 ……… 8 3-2-3 ……… 9 3-2-4 ……….. 10 3-2-5 ( B C) ……….. 11 3-2-6 Γ- ( B C) ……… 11
4-1 ……… 12 4-2 ………. 13 4-2-1 ……….. 13 4-2-2 ……….. 13 4-2-3 ……….. 14 4-2-4 ……….. 14 4-2-5 ……….. 15 4-2-6 ……….. 16 4-3 ……… 16 4-4 ……… 17 4-5 ……… 18 4-6 ………. 19 4-7 ……… 19
4-7-1 ……….….………... 19 4-7-2 ……….….. 20 4-7-3 ……….……….. 20 ……….. 21 ………... 22
2-1 ………..…………. 26 2-2 HEMT ……… 27 2-3 InxGa1-xAs InAs ……… 28 2-4 ……… 29 3-1 A ……….………. 30 3-2 B ……….…. 31 3-3 C ……….. 32 3-4 ……….……….. 33 3-5 Γ- ……….………. 34 3-6 ………..……… 35 4-1 A 300K ………..… 36 4-2 B 300K ………..… 37 4-3 C 300K ………..… 38 4-4 AlGaAs/InGaAs pHEMTs 300K …… 39 4-5 A 300K VDS=3.5V …….. 40 4-6 B 300K VDS=3.5V ……… 41 4-7 C 300K VDS=3.5V ……… 42 4-8 AlGaAs/InGaAs pHEMTs 300K VDS=3.5V ………...… 43 4-9 AlGaAs/InGaAs pHEMTs 300K …………. 44 4-10 AlGaAs/InGaAs pHEMTs 300K ……...… 45 4-11AlGaAs/InGaAs pHEMTs 300K ………. 46 4-12 A B C ………..…..…….. 47
4-14 B VDS=3.5V 1.2 × 200 µm2 …….…. 49 4-15 C VDS=3.5V 1.2 × 200 µm2 ……….. 50 4-16 A B C 2.4 GHz ………...………..… 51 4-17 A B C 5.8 GHz ………...………….. 52 4-18 A B C ….. 53 4-19 A B C ………..….… 54 4-20 A 300K ~ 450 K ……… 55 4-21 B 300K ~ 450 K ……….… 56 4-22 C 300K ~ 450 K ………. 57 4-23 A 300K ~ 450 K ……. 58 4-24 B 300K ~ 450 K ……. 59 4-25 C 300K ~ 450 K …… 60 4-26 AlGaAs/InGaAs pHEMTs ….. 61 4-27 AlGaAs/InGaAs pHEMTs …………..… 62 4-28 AlGaAs/InGaAs pHEMTs …………..… 63 4-29 A 300K ~ 450 K / ……… 64 4-30 B 300K ~ 450 K / ……… 65 4-31 C 300K ~ 450 K / ……… 66
/ HEMTs (MMIC) [1]-[5] (kink effect) / HEMTs [6]-[8] - - (MOS) — / MHEMT HEMT 1 ( < 40 ) 2 3 4 / 5 [9]-[12]
effect) FET [13]-[17] Γ- 1µm / pHEMT Γ-MOS (Au) 300K
(MMIC) (HEMTs)
2-1 pHEMT
(pHEMT) (pHEMT)2-2 pHEMT
HEMT (1) n - (2) (3)δ (4) (5) (6) /2-2-1
1018 cm-3 HMET(fT)
2-2-2
( ) ( ) / (2-DEG)2-2-3 δ
HEMT δ [18]-[21] (1) (2) (3) (4) δ-V [22]-[23] FET 2µm [24] δ δ HEMTδ-HEMT δ-HEMT
δ-2-2-4
HEMT ( ) 20Å 50 Å2-2-5
HEMT 2-1 2-12-3
HEMT
2-2 HEMT
( Faza Ali Aditya Gupta HEMT and HBTs )
2-3 InxGa1-xAs InAs
2-2-6
-2-3
(two-dimensional electron gas 2-DEG)
( ) 2-4
2-4
(HEMTs) HEMTs
3-1
3-1 / A(Sample A) 3-2
3-3 (LFP) (LG) Γ- -
-B C(Sample B Sample C)
3-1
length Sample A Sample B Sample C
LG (µm) 1.2 0.8 0.6
LFP (µm) 0 0.4 0.6
3-1 (LG) (LFP)
1.2 ×100µm2
B C 0.8 µm 0.6 µm 0.4 µm 0.6 µm 3-2 B 3-3 C / / p HEM T (MOCVD) 3-1 / A (100) (1) 5000 Å (2) 1000 Å Al0.2Ga0.8As (3) δ ( 1× 1012 cm-2 ) (4) 25Å Al0.2Ga0.8As (5) 150Å In0.2Ga0.8As (6) 25Å Al0.2Ga0.8As (7) δ ( 3× 1012 cm-2 ) (8) 1000Å Al0.2Ga0.8As (9) 200Å ( 4× 1018 cm-2 ) n+
-/ Γ- -
-3-2
3-4 3-5 3-6 (1) (2) (3) (4) 3-4/ (Au/Ge/Ni) (Au/Ni) 3-5
3-2-1
(100) (011)3-2-2
FH -6400L 90 100 (H3PO4 H2O2 H2O=1 1 30) α 1 24Å (1) (2) (3) (4) ( ) (5) (6) (7) (8) (9)3-2-3
(NH4OH H2O=1:1) FH -6400L 90 5/ / 84:12:4 4 ×10-6 5 ×10-6 torr (Au) 6 490 (1) (2) (3) (4) ( ) (5) (6) (7) (8) (9) (10)
3-2-4
(NH4OH H2O=1:1) (H3PO4 H2O2 H2O=1 1 37.5 ) 1 18Å / HEMTs(1) (2) (3) (4) ( ) (5) (6) (7) (8)
3-2-5
(
B
C)
(H3PO4 H2O2 H2O=4 4 150) / 1.2 ×100µm2 - 7µm pHEMTs Welsbach T-816 17.7 p.p.m. 1nm/min 10
/ 3-5
Г- B( C)
4-1
5000G 300K (1) (2) (3) (4) 4-1 (ns) 4.37×1012 cm-2 (µn) 4030 cm2 (V-S)-1 10 (ns) 4.45×1012 cm-2 (µn) 4100 cm2 (V-S)-1 (ns) [24]-[25] Treatment Sheet Resistivity (ohm/sq) Mobility (cm2/V-s) Sheet concentration (cm-2) µn × ns (1/V-s) Without ozone water treatment 354.3 4030 4.37×10 12 1.76×1016 With ozone water treatment for 10 minutes 341.1 4100 4.45×1012 1.82×1016 4-1300K A B C 1.2×100 µm2 0.8×100 µm2 0.6×100 µm2 7µm KEITHLEY 4200
4-2-1
4-1 4-2 4-3 A B C (IDS) -(VDS) VGS(max) 0.5V - 3V - 0.5V/step 4-4 A B C 0 1 2 3 4 5 0 50 100 150 200 250 300 350 VGS = 0.5 ~ - 3 V Step = - 0.5 V T = 300 KDrain - Source Voltage (V)
D ra in C u rr en t D en si ty ( m A /m m ) 4-1 A 300K 0 1 2 3 4 5 0 50 100 150 200 250 300 350 V GS = 0.5 ~ - 3 V Step = - 0.5 V T = 300 K
Drain - Source Voltage (V)
D ra in C u rr en t D en sit y ( m A /m m ) 4-2 B 300K
0 1 2 3 4 5 0 50 100 150 200 250 300 350 V GS = 0.5 ~ - 3 V Step = - 0.5 V T = 300 K
Drain - Source Voltage (V)
D ra in C u rr en t D en sit y ( m A /m m ) 4-3 C 300K 0 1 2 3 4 5 0 50 100 150 200 250 300 350 Sample A Sample B Sample C VGS = 0.5 ~ - 3 V Step = - 0.5 V T = 300 K
Drain - Source Voltage (V)
D ra in C u rr en t D en sit y ( m A /m m ) 4-4 AlGaAs/InGaAs pHEMTs 300K
4-2-2
4-5 4-6 4-7 VDS=3.5V A B C (gm) (IDS) 4-8 gm IDS 4-2 (ID S S m a x) (gm , ma x) B CCharacteristics Sample A Sample B Sample C
IDSS, max (mA/mm) 331 339 350
gm, max (mS/mm) 115 129 137
Vth (V) - 2 - 1.4 - 1.2
-4 -3 -2 -1 0 1 2 0 20 40 60 80 100 120 V DS = 3.5 V D ra in S o u rc e C u rr en t D en sit y ( m A /m
Gate - Source Voltage (V)
E x tr in sic T ra n sc o n d u ct a n ce ( m S /m m 0 50 100 150 200 250 300 350 4-5 A 300K VDS=3.5V -4 -3 -2 -1 0 1 2 0 20 40 60 80 100 120 140 D ra in S o u rc e C u rr en t D en sit y ( m A /m m )
Gate - Source Voltage (V)
E x tr in sic T ra n sc o n d u ct a n ce ( m S /m m ) 0 50 100 150 200 250 300 350 400 V DS = 3.5 V 4-6 B 300K VDS=3.5V -4 -3 -2 -1 0 1 2 0 20 40 60 80 100 120 140 D ra in S o u rc e C u rr en t D en si ty ( m A /m m )
Gate - Source Voltage (V)
E x tr in sic T ra n sc o n d u ct a n ce ( m S /m m ) 0 50 100 150 200 250 300 350 400 V DS = 3.5 V 4-7 C 300K VDS=3.5V
Sample A D ra in S o u rc e C u rr en t D en si ty ( m A /m m ) E x tr in si c T ra n sc o n d u ct a n ce ( m S /m m ) Sample B -4 -3 -2 -1 0 1 2 0 20 40 60 80 100 120 140 Sample C
Gate - Source Voltage (V)
0 50 100 150 200 250 300 350 400 VDS = 3.5 V 4-8 AlGaAs/InGaAs pHEMTs 300K VDS=3.5V (4-1)[25]:
ε
φ
( ) 2DEG d d n q c E q B th V ∆ + − ∆ − = (4-1) ΦB ∆Ec d + ∆d 4-2 4-2 A B C4-2-3
4-9 A B C (BVGD) (Von) (IGS/W) 1mA/mmCharacteristics Sample A Sample B Sample C
BVGD (V) - 13.6 - 30.3 - 31
Von (V) 0.6 0.7 0.7
Sample B Sample A -35 -30 -25 -20 -15 -10 -5 0 -1.0 -0.5 0.0 0.5 Sample C
Gate - Drain Voltage (V)
G a te C u rr en t D en sit y ( m A /m m 0.0 0.5 1.0 0.0 0.5 G a t e C u r r e n t D e n s i t y ( m A G a t e C u r r e n t D e n s i t y ( m A G a t e C u r r e n t D e n s i t y ( m A G a t e C u r r e n t D e n s i t y ( m A
Gate - Drain Voltage (V)
4-9 AlGaAs/InGaAs pHEMTs 300K 4-3 B C A / B C
4-2-4
4-10 A B C (IDS/W) 1mA/mmCharacteristics Sample A Sample B Sample C
BVDS (V) 5.4 7.9 8.5
4-4
Sample A
Drain - Source Voltage (V)
0 2 4 6 8 10 Sample B D ra in C u rr en t D en si ty ( m A /m m ) 0.0 0.5 1.0 Sample C VGS = - 3.5 V 4-10 AlGaAs/InGaAs pHEMTs 300K
4-4 B C A :(1)MOS (2) / (3) / [26]
4-2-5
4-11 A B C : d m o m V g g r g A = ⋅ = (4-2) 4-5 A B C VDS=3.5V B C A C B C 0 1 2 3 4 Sample A , VGS = - 1.5 V E x tr in si c T ra n sc o n d u ct a n ce ( m S /m m ) a n d O u tp u t C o n d u ct a n ce ( m S /m m ) 0 40 80 120 160 200 Sample B , VGS = - 0.5 V In tr in si c V o lt a g e G a in gd gm AV Sample C , VGS = - 0.5 VDrain - Source Voltage (V)
0 50 100 150 200 250 300 350 4-11 AlGaAs/InGaAs pHEMTs 300K
gm (mS/mm) 115 129 137 gd (mS/mm) 1.46 1.35 0.75 Av 82 126.2 178.8 4-5 VDS=3.5V
4-2-6
4-12 A - - B - -1MHz B 3nm 10nm A B 8000µm2 / B A 0 2 4 6 8 10 Sample B/C C a p a ci ta n ce ( p F ) -4 -3 -2 -1 0 1 2 3 4 Sample A Bias (V) 4-12 A B C4-3
HP8510B HP8517B S 0.2 50GHz 1.2×200µm2 7µm HP Eesof Touchstone SH21 0dB fT (MAG) fmax fT fmax
)
(
2
GS GD m TC
C
g
f
+
≈
π
(4-3) 12 0 max]
2
)
(
[
2
G S GD TC
R
R
G
f
f
π
+
+
≈
(4-4)Characteristics Sample A Sample B Sample C
fT(GHz) 10.9 13.3 14.4 fmax(GHz) 19.3 26.8 35.3 4-6 1.2×200µm2 fT fmax 4-13 4-14 4-15 A B C fT fmax VDS 3.5V 4-6 C 1 10 0 5 10 15 20 25 30 35 f T = 10.9 f max = 19.13 V DS = 3.5 V V GS = - 1.5 V |H21| MAG MSG Frequency (GHz) G a in ( d B ) 4-13 A VDS=3.5V 1.2 × 200 µm2
1 10 0 5 10 15 20 25 30 VDS = 3.5 V V GS = - 0.5 V MAG MSG f T = 13.3 f max = 26.8 |H21| Frequency (GHz) G a in ( d B ) 4-14 B VDS=3.5V 1.2 × 200 µm2 1 10 0 5 10 15 20 25 30 35 f T = 14.4 f max = 35.3 V DS = 3.5 V V GS = - 0.5 V |H 21| MAG MSG Frequency (GHz) G a in ( d B ) 4-15 C VDS=3.5V 1.2 × 200 µm2
4-4
AB=
−
×
100
%
DC in out dd aP
P
P
η
(4-5)Characteristics Sample A Sample B Sample C
P.A.E.(%) 24.4 31.7 35
Pout(dBm) 10.64 13.81 14.9
Gs(dB) 8.88 9.82 11.5
4-7 2.4GHz
Characteristics Sample A Sample B Sample C
P.A.E.(%) 16.2 26.5 28 Pout(dBm) 10.1 13.29 14 Gs(dB) 6.45 7.69 8.7 4-8 5.8GHz 2.4GHz 5.8GHz 4-16 4-17 1.2×200µm2 2.4GHz 5.8GHz 4-7 4-8 VDS 3.5V 2.4GHz 5.8GHz 4-7 4-8 C -30 -20 -10 0 10 Sample A , VGS = - 0.75 V P .A .E . (% ) O u tp u t P o w er ( d B m ), P o w er G a in ( d B ) Sample B , VGS = - 0.25 V -30 -20 -10 0 10 20 30 40 VDS = 3.5 V Input Power (dBm) 0 10 20 30 40 Sample C , VGS = - 0.25 V 4-16 A B C 2.4 GHz
-30 -20 -10 0 10 P .A .E . (% ) O u tp u t P o w er ( d B m ) & P o w er G a in ( d -30 -20 -10 0 10 20 30 DS Input Power (dBm) Sample B , VGS = - 0.25 V 0 10 20 Sample C , VGS = - 0.25 V 4-17 A B C 5.8 GHz
4-5
4-18 (NFmin) 1.2×200µm2 HP85122A 1~6GHz 1 2 3 4 5 6 Sample A , VGS = - 0.75 V A ss o ci a te d G a in ( d B ) 0 1 2 3 4 5 6 Sample C , VGS = - 0.25 V M in im u n N o is e F ig u re ( d B ) VDS = 3.5 V Sample B , VGS = - 0.25 V Frequnecy (GHz) 5 10 15 20 25 4-18 A B CCharacteristics Sample A Sample B Sample C NFmin(dB) 2.4GHz 1.5 1.1 0.9 5.8GHz 3.1 2.4 2.1 Associated gain(dB) 2.4GHz 14 14.3 14.6 5.8GHz 9.6 9.8 10.1 4-9 2.4GHz 5.8GHz m g s gs g R R fKC NFmin ≈1+2
π
+ (4-6) 4-9 (NFmin) (4-6) B C A4-6
Agilent 35670A HP4145B 1Hz~100KHz VDS 3.5V IDS 100mA/mm IDS 4-19 B C A100 101 102 103 104 105 1E-23 1E-22 1E-21 1E-20 1E-19 1E-18 1E-17 1E-16 1E-15 Sample A Sample B Sample C Frequency (Hz) A v er a g e In p u t - N o is e V o lt a g e S p et ra ( V 4-19 A B C
4-7
300K~450K4-7-1
4-20 4-21 4-22 A B C 300K~450K (IDS) (VDS) /300K 350K D ra in C u rr en t D en si ty ( m A /m m ) 400K VGS = 0.5 ~ - 3 V Step = - 0.5 V Drain-Source Voltage (V) 0 1 2 3 4 5 0 50 100 150 200 250 300 450K 4-20 A 300K ~ 450 K 300K D ra in C u rr en t D en si ty ( m A /m m ) 0 50 100 150 200 250 300 350K VGS - 0.5 ~ - 3V Step = - 0.5 V Drain-Source Voltage (V) 400K 0 1 2 3 4 5 450K 4-21 B 300K ~ 450 K 300K 0 50 100 150 200 250 300 350K VGS = 0.5 ~ - 3 V Step = - 0.5 V Drain-Source Voltage (V) 400K 0 1 2 3 4 5 450K D ra in C u rr en t D en si ty ( m A /m m ) 4-22 C 300K ~ 450 K
4-23 4-24 4-25 A B C 300K~450K VDS 3.5V (gm) (IDS) (gm.max) (IDS) [27] 4-26 4-27 (IDS) (gm.max) 4-28 VDS 3.5V (Vth) (300K~450K) 300K D ra in S o u rc e C u rr en t D en si ty ( m A /m m ) 350K 0 20 40 60 80 100 120 140 400K VDS = 3.5 V
Gate - Source Voltge (V)
-4 -3 -2 -1 0 1 2 450K E x tr in si c T ra n sc o n d u ct a n ce ( m S /m m ) 0 50 100 150 200 250 300 350 4-23 A 300K ~ 450 K -4 -3 -2 -1 0 1 2 300K D ra in S o u rc e C u rr en t D en si ty ( m A /m m ) 350K E x tr in si c T ra n sc o n d u ct a n ce ( m S /m m ) 400K 0 20 40 60 80 100 120 140 450K VDS = 3.5 V
Gate - Source Voltge (V)
0 50 100 150 200 250 300 350 4-24 B 300K ~ 450 K
-4 -3 -2 -1 0 1 2 300K D ra in S o u rc e C u rr en t D en si ty ( m A /m m ) 350K E x tr in si c T ra n sc o n d u ct a n ce ( m S /m m ) 0 20 40 60 80 100 120 140 400K VDS = 3.5 V
Gate - Source Voltge (V)
450K 0 50 100 150 200 250 300 350 400 4-25 C 300K ~ 450 K 250 300 350 400 450 500 200 250 300 350 400 Sample A IDS S , m a x ( m A /m m ) Temperature (K) Sample B Sample C 4-26 AlGaAs/InGaAs pHEMTs 250 300 350 400 450 500 80 100 120 140 160 Sample A gm , m a x ( m S /m m ) Temperature (K) Sample B Sample C 4-27 AlGaAs/InGaAs pHEMTs
250 300 350 400 450 500 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 Vth ( V ) Temperature (K) Sample B Sample C 4-28 AlGaAs/InGaAs pHEMTs
4-7-3
4-29 4-30 4-31 A B C 300K~450K -15 -10 -5 0 -1.0 -0.5 0.0 0.5 1.0 300K 350K 400K 450KGate - Drain Voltage (V)
G a te C u rr en t D en sit y ( m A /m m ) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 G a te C u rr en t D en si ty ( m A /m m )
Gate - Drain Voltage (V)
-35 -30 -25 -20 -15 -10 -5 0 -1.0 -0.5 0.0 0.5 1.0 300K 350K 400K 450K
Gate - Drain Voltage (V)
G a te C u rr en t D en sit y ( m A /m m ) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 G a te C u r re n t D e n si ty ( m A /m m )
Gate - Drain Voltage (V)
4-30 B 300K ~ 450 K / -35 -30 -25 -20 -15 -10 -5 0 -1.0 -0.5 0.0 0.5 1.0 300K 350K 400K 450K
Gate - Drain Voltage (V)
G a te C u rr en t D en sit y ( m A /m m ) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 G a te C u r re n t D en si ty ( m A /m m )
Gate - Drain Voltage (V)
/ - -
-/
- -
[1] T. Kaho, Y. Yamaguchi, and K. Uehara, “A Compact K/Ka-band Transceiver MMIC Using GaAs 3D-MMIC Technology”, Microwave Conference
Proceedings, pp. 822-825, 2010.
[2] T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, K. Nishikawa, and M. Aikawa, “Highly Integrated Three-Dimensional MMIC Technology Applied to Novel Masterslice GaAs- and Si-MMIC’s”, IEEE Journal of Solid-State Circuits, vol. 32, no. 9, pp. 1334-1341, 1997.
[3] J. G. Yang and K. Yang, “Ka-Band 5-Bit MMIC Phase Shift Using InGaAs PIN
Switching Diodes”, IEEE Microwave and Wireless Components Letters, vol. 21, no. 3, pp.151-153, 2011.
[4] J. B Scott, T. S. Low, S. Cochran, B. Keppeler, J. Staroba, and B. Yeats, “New Thermocouple-Based Microwave/Millimeter-Wave Power Sensor MMIC Techniques in GaAs”, IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 2, pp. 338-344, 2011.
[5] C. Florian, P. A. Traverso, and F. Filicori, “The Charge-Controlled Nonlinear Noise Modeling Approach for the Design of MMIC GaAs-pHEMT VCOs for Space Applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 4, pp. 901-912, 2011.
[6] K. W. Lee, N. Y. Yang, M. P. Hong, and Y. H. Wang “Improved breakdown
voltage and impact ionization in InAlAs/InGaAs metamorphic
high-electron-mobility transistor with a liquid phase oxidized InGaAs gate”,
Applied Physics Letters, vol. 87, p. 2635011, 2005.
[7] M. Takebe, K. Nakamura, N.C. Paul, K. Iiyama, and S. Takamiya,
Devices, vol. 51, no. 3, p. 311, 2004.
[8] C. B. Demclo, D. C. Hall, G. L. Snider, D. Xu, G. Kramer, and N. E. Zein, “High electron mobility InGaAs-GaAs field effect transistor with thermally oxidized AlAs gate insulator”, IEEE Electron Device Letters, vol. 36, no. 1, p. 84, 2000.
[9] D. H. Kim, H. H. Noh, S. S. Choi, J. H. Lee, and K. S. Seo, “ Passivation Study for In0.4AlAs/In0.65GaAs HEMTs by UHV RPECVD grown SiNx Dielectrics and
their impact on I-V kink & low-frequency dispersion phenomena”, in Proc. Int.
Conf. Indium Phosphide and Related Materials, p. 354, 2004.
[10] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K.K. Ng,
and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition”, Applied
Physics Letters, vol. 84, p. 434, 2004.
[11] P. A. Parikh, S. S. Shi, J. Ibettson, E. L. Hu, and U. K. Mishra, “Hydrogenation of GaAs MISFETs with Al2O3 as the gate insulator”, IEEE Electron Letters, vol.
32, no.18, p. 1724 , 1996.
[12] K. W. Lee, N. Y. Yang, M. P. Hong, and Y. H. Wang “Improved breakdown
voltage and impact ionization in InAlAs/InGaAs metamorphic
high-electron-mobility transistor with a liquid phase oxidized InGaAs gate”,
Applied Physics Letters, vol. 87, p. 2635011, 2005.
[13] Y. Ando and T. Itoh, “Accurate Modeling for Parasitic Source Resistance in Two-Dimensional Electron Gas Field-Effect Transistors,” IEEE Transactions on
Electron Devices, vol. 36, p. 1036, 1989.
[14] K. T. Alavi, D. M. Shaw, and P. J. “DuvalEvolution of T-Shaped Gate Lithography for Compound Semiconductors Field-Effect Transistors“, IEEE
Transactions on Semiconductor Manufacturing, vol. 16, no. 3, p. 365, 2003.
[15] H. R. Chen, M. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “InGaP/InGaAs Pseudomorphic Heterodoped Channel FETs With a Field Plate and a Reduced Gate Length by Splitting Gate Metal”, IEEE Electron
Device Letters, vol. 27, p. 12 , 2006
[16] G. M. Metze, J. F. Bass, and T. T. Lee, “A Dielectric-Defined Process for the Formation of T-Gate Field-Effect Transistors”, IEEE Microwave and Guided
Wave Letters, vol. 1, p. 3, 1991.
[17] K. S. Lee, Y. S. Kim, K. T. Lee, and Y. H. Jeong, “Process for 20 nm T gate on Al0.25Ga0.75As/In0.2Ga0.8As/GaAs epilayer using two-step lithography and zigzag
foot”, Journal of Vacuum Science & Technology B , vol. 24, p. 4, 2006.
[18] Fazal Ali and Alitya Gupta, “HEMTs and HBTs; Devices, Fabrication, and Circuits”, p.82.
[19] J. C. Huang, M. Zaitlin, W. Hoke, M. Adlerstein, P. Lyman, P. Saledas, G. Jackson, E. Tong, and G. Flynn, “A high-gain, low-noise 1/2-µm pulse-doped pseudomorphic HEMT”, IEEE Electron Device Letters, vol. 10, p. 511, 1989.
[20] A. Fathimulls, J. Abrahams, T. Loughran, and H. Hier, “High performance InAlAs/InGaAs HEMTs and MESFETs”, IEEE Electron Device Letters, vol. 28, no. 19, p. 1849, 1992.
[21] S. R. Bahl and J. A. del Alamo, “Elimination of mesa sidewall gate leakage in InAlAs/InGaAs HFETs”, IEEE Transactions on Electron Devices, vol. 13, no. 4, p. 195, 1992.
[22] S. R. Bahl, M. H. Leary, and J. A. del Alamo, “Mesa sidewall gate leakage in InAlAs/InGaAs HFETs”, IEEE Transactions on Electron Devices, vol. 39, no. 9, p. 2037, 1992.
Electron Device Letters, vol. 9, no. 9, p. 439, 1988.
[24] S. R. Bahl, B. R. Bennett, J. A. Alamo, “Doubly stained InAlAs/n-InGaAs HFET with high breakdown voltage”, IEEE Electron Device Letters, vol. 14, no. 1, p. 22, 1993.
[25] Y. Pei, K. J. Vampola, Z. Chen, R. Chu, S. P. DenBaars, and U. K. Mishra, “AlGaN/GaN HEMT with a Transparent Gate Electrode”, IEEE Electron Device
Letters, vol. 30, no. 5, pp. 439-441, 2009.
[26] C. S. Lee, S. H. Yang, and M. Y. Lin, ”Γ-Gate MOS-HEMTs by Methods of Ozone Water Oxidation and Shifted Exposure”, IEEE Electron Device Letters, vol. 32, no. 2, pp. 152-154, 2011.
[27] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current In0.49Ga0.51As/In0.15Ga0.85As pseudomorphic
HEMT”, IEEE Electron Device Letters, vol. 20, p. 274,1998.
[28] C. S. Lee, M. Y. Lin, B. Y. Chou, W. C. Hsu, H. Y. Liu, C. S. Ho, and Y. N. Lai, "Investigations on Al0.2Ga0.8As/In0.2Ga0.8As MOS-pHEMTs with Different Shifted Γ-Gate Structures," ECS Journal of Solid State Science and Technology , vol.1(1), pp.Q1~Q5 , 2012-07. (SCI)