• 沒有找到結果。

Design of a CMOS phase to digital transducer for optical incremental sensors

N/A
N/A
Protected

Academic year: 2021

Share "Design of a CMOS phase to digital transducer for optical incremental sensors"

Copied!
8
0
0

加載中.... (立即查看全文)

全文

(1)

Cheng-Ta

Chiang

a,∗

, Kaun-Chun

Hsieh

b

, Yu-Chung

Huang

b

aDepartmentofElectricalEngineering,NationalChia-YiUniversity,Taiwan

bMeasurementTechniquesLaboratory,NationalChiaoTungUniversity,HsinChu,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31December2010 Receivedinrevisedform24May2011 Accepted24May2011

Available online 31 May 2011 Keywords:

Opticalincrementalsensors Interpolationcircuits ADC

PLL

a

b

s

t

r

a

c

t

Inthispaper,aCMOSphasetodigitaltransducerforopticalincrementalsensorsisnewlyproposed.The proposedchipcaneasilyproducephaseshiftsofsignalsbyusingaresistorchain.Asetofcalibration circuitsforopticalincrementalsensorsisalsodesignedintheproposedchip.Anotherinnovationisthat theoutputsoftheproposedchiparedirectlydigitized;theycouldbeeasilysentoverawiderangeof transmissionmedia,suchasPSN,radio,optical,IR,ultrasonic,etc.Besides,itdoesnotalsoneedaROM componentorafastcounterasusedinthestructuresofADC-basedandPLL-basedinterpolations.Based uponthedeviceparametersof0.5␮m2P2MCMOStechnologywith5Vpowersupply,allthefunctions andperformanceoftheproposedCMOSphasetodigitaltransducerforopticalincrementalsensorsare successfullytestedandproventhroughmeasurements.TheareaoftheproposedchipincludingESDI/O padsis2010×1502␮m2.Theinterpolationfactoris5,10,and40.Theproposedchipissuitableforoptical

incrementalsensors.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The developments of precise measurement and positioning devices[1,2] havebeenusedontheprocess,testingequipment ofelectronicandsemiconductorindustry.Smallerlinewidthand morepreciseneedsarerequiredintonano-meterscale.Thus,the techniquesofimprovingtheaccuracyandresolution onprecise measurementsarestronglyrequired.

Exceptforthelaserinterferometer,themainpositioningand displacementdevicesarelinearencoders,whichhavethe charac-teristicsoflowercost.Amonglinearencoders,opticalencodersare popularinmodernelectronicandsemiconductorindustryduetoits characteristicofhigh-accuracy.Opticalencoders,whichconsistof opticalsensorsandcircuits,employthelightpassingthroughthe grating.Thus,theencodersgenerateperiodicquadraturesignals. Thephasesofthesequadraturesignalsarerelativetothe move-mentofthegrating.However,theaccuracyis stillrestrictedby opticalpropertiesandmechanicalassembly.Inordertoimprove theaccuracy andresolution of opticalencoders,a technique of interpolationis developed [3–10]. Itimprovestheresolution of opticalencoders bydoing thesubdivisionof thephases. Previ-ousmethod[3,4]utilizesaphase-lockedloop(PLL)toachievethe

夽 ThisworkwassupportedbytheNationalScienceCouncil,Taiwan,under con-tractsNSC-99-218-E-415-002.

∗ Correspondingauthor.Tel.:+88652717587;fax:+88652717558. E-mailaddresses:ctchiang@mail.ncyu.edu.tw,ctchiang23@yahoo.com.tw (C.-T.Chiang).

interpolation.However,theseachievementsshoulddesignan oscil-latortosynthesizefrequency.Thedesignofahigh-frequencyPLL, whichiswithprecisionlockedfrequencyandgoodlinearityofan oscillator,isratherdifficult.Anothermethod[5–8],whichusesan analog-to-digitalconverter(ADC),isusedtoperformthe interpo-lation.However,thisschemeneedsaROMcomponenttoperform thefunctionoflook-uptable.ThetechnologyandROMsizewill beanotherconsiderableissue.Besides,this schememayneeda higher systemclock.For example,previouswork[6]requires a clockfrequency of 30MHz. Hence,a technique, whichis based oncomparator-basedinterpolation[9,10],isproposed.However, Stephensetal.[9]andRiederetal.[10]needtouse4and3sine signalstogeneratesignalswithdifferentphases.Theprocessing circuitsarecomplicated.Anotherissueoftheinterpolationerror shouldalsobediscussed.Thephasedelayandfrequencyjitterof PLLproducetheinterpolationerrorofPLL-basedinterpolation.This errorisbasicallyrelatedtothecircuitstructureofPLL.The interpo-lationerrorofADC-basedinterpolationiscausedbytheresolution, responsetime, andaccuracyofADC.Althoughtheinterpolation errorcanbereducedbyusingahighresolutionADC,theresponse time also increases.Besides, theaccuracy is related tothe cir-cuitstructureof ADC.For example,nonlineareffectofADCisa problemontheADC-basedinterpolation.Theinterpolationerror ofcomparator-basedinterpolationcomesfromthefiniteDCgain andresponsetimeofcomparator.Theinterpolationerrorcanbe reducedbyincreasingthefiniteDCgainandspeedingupthe tran-sientresponse ofacomparator.ComparedwithADC-basedand PLL-basedinterpolations,theinterpolationerrorof comparator-basedinterpolationiseasilyreducedbydesigningonthecircuit

0924-4247/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.sna.2011.05.026

(2)

Fig.1. (a)Opticalabsolutesensorsand(b)opticalincrementalsensors.

structureofauniformcomparator.Differenttopreviousworks,an improvedmethod[11]ofcomparator-basedinterpolationis pro-posed.Theproposedchipcaneasilyproducephaseshiftsofsignals byusinga resistorchain.Asetofcalibrationcircuitsforoptical incrementalsensorsisalsodesignedintheproposedchip.Another innovationisthattheoutputsoftheproposedchiparedirectly digitized;theycouldbeeasilysentoverawiderangeof transmis-sionmedia,suchasPSN,radio,optical,IR,ultrasonic,etc.Besides, itdoesnotalsoneedaROMcomponentorafastcounterasusedin thestructuresofADC-basedandPLL-basedinterpolations.Relative tothiswork,adigital-to-phaseconverterisdiscussedin[12,13]. However,theyaremainlyresearchedonhigh-speedPLLor delay-lockedloop(DLL).Inthiswork,weproposeanimprovedmethod and openly demonstrate how to implement a phase to digital transducerforopticalincrementalsensors.Readerscanunderstand wholedesigntechniquesfromthiswork,andthisisthemain con-tributionofthiswork.

Inthis paper,aCMOSphasetodigital transducerforoptical incremental sensors is newly proposedand designed in CMOS 0.5␮m2P2Mprocesswith5Vpowersupply.Theareaofthe pro-posedchipincludingESDI/Opadsis2010×1502␮m2.Thepower

consumptionis50mW.Theproposedchipissuitableforoptical incrementalsensors.

In Section 2, theoverview of optical incremental sensors is addressed.Section3discussessystemarchitectureandsimulation results.Section4demonstratesthemeasurements.Finally, conclu-sionsandfutureworksaredescribed.

2. Theoverviewofopticalincrementalsensors

Opticalsensorsusedintheopticalencoderscanbedistinguished intotwotypesasshowninFig.1.Oneisopticalabsolutesensorsand theotherisopticalincrementalsensors.Thedifferencebetween themis in thearrangementsofoptical grating.The distanceof opticalgratingofincrementaltypeisdesignedinequalspace.The outputsignals areperiodic signals. However,thearrangements ofabsolutetypearetotallydifferent.Theoutputsignalsjust cor-respondtoitsabsoluteposition.Thedesignofopticalgratingof incrementaltypeiseasierthanthatofabsolutetype.Inthispaper, theincrementaltypeischosenanditscorrespondingcircuitis pro-posed.However,duetocongenitalfeaturesofincrementaltype,

Fig.2. Opticalincrementalsensorsandtheproposedphasetodigitaltransducer.

measurement errors will be alwaysaccumulated. Thus, optical incrementalsensorsneedtoperformtheextracalibrationto elim-inatetheaccumulatederrors.Thecalibrationmethodistoadda designofreferencemask.AsshowninFig.2,whenaglassscaleand anindexplatehavearelativemovement,thelightingintensityof phototransistorswillbechanged.Theoutputsignalscanbeviewed aswaveswhicharesimilartosinesignalsasshowninFig.3.The outputcurrentsofopticalincrementalsensorsareIA,IB,andIR.IA

andIB arethemaininputsourcesoftheproposedchip.IR isthe

currentusedtocalibratetheaccumulatederrors.TheperiodofIA

andIBisequaltothewidthofanopticalgrating.Tocalculatethe

numbersoftheperiodistoobtainthedistanceofthemovement. Theresolutionofopticalincrementsensorsislimited bythe widthofanopticalgrating.Iftheresolutionneedstoincrease,the widthofanopticalgratingmustalsobeshortened.However,the techniquetomakethewidthbelessthan1␮misratherdifficult. Besides,theeffectsofdiffractionandnoisewillbeseriousproblems. Thisworkproposesanimprovedmethodtodo thesubdivision ofthephases.Byusingtheproposedmethod,resolutioncanbe increasedwithoutchangingthewidthofanopticalgrating.The specificationoftheopticalincrementalsensorcanbecapturedfrom [14].InSection4,theopticalincrementalsensorwillbeapplied andexperimentedontheproposedphasetodigitaltransducer.In thefollowingsections,allthediscussionsofsystemarchitecture, simulation,andmeasurementresultswillbediscussed.

3. Systemarchitectureandsimulationresults

The proposed CMOS phase to digital transducer for optical incrementalsensorsincludesa currenttovoltageconverterand interpolationcircuits.TheinterpolationcircuitsasshowninFig.4 implementaresistorchain,comparators,andthedigitalprocessing circuits.ThesignalsofVA,VA−,Zin,andVBareconnectedtothe

out-putsofthecurrenttovoltageconverter.ThesignalsofAout,Bout,are

thedigitizedoutputs.TheoutputsignalofZoutisusedtocalibrate

theaccumulatederrorsofopticalincrementalsensors.Thesignal ofAcomisthecommon-modevoltage.ThecurrentofIrefisthebias

currentofcomparators.ThesignalsofSel0andSel1candecidethe

interpolationfactorof5or10.ThesignalofEnisanenablesignal, whichcanturnonoroffthechip.

Fig.5 shows thebasicprinciple of theproposedphase-shift method.A resistor chain is built toimplement the phase-shift method.ThepulsesignalofVDistheoutputofacomparatorand

thesignalofVsisaphase-shiftsignalwithphase.Thephase

dif-ferenceofVAandVBis90◦.Accordingtothesuperpositiontheorem,

thevoltageofVscanbeobtainedas

Vs= R2 R1+R2 sin()+ R1 R1+R2 cos()=



(R2 1+R22) R1+R2 × sin(+) (1)

(3)

Fig.3. IA,IB,andIRaretheoutputcurrentsofopticalincrementalsensors.Aout,Bout,Zoutaretheoutputsoftheproposedphasetodigitaltransducer.ThenumberofIFisthe

interpolationfactor.

Fig.4. Thecircuitdiagramoftheproposedinterpolationcircuits.

and cot= R2

R1

(2) whereistheshiftphase.By(2),whentheratioofR1 andR2is

chosen,theisattained.InFig.6,thesignalofVisacquiredby

usingaXORlogicgate.ThatmeansthattheVisgeneratedfrom

theXORlogicfunctionofVDSandVDA.Thefunctionofinterpolation

isimpliedinthesignalofV.Similarly,theproposedmethodcan

beextendedintotheinterpolationfactorofNasshowninFig.7. Thephasedifferenceofwithineachresistorisafixedphaseof .Byfollowing(1)and(2),eachresistorRMwithinaresistorchain

Fig.5. Thebasicprincipleoftheproposedphase-shiftmethod.

Fig.6.ThewaveformofV.

Fig.7. ThedivisionsofphaseswiththeinterpolationfactorN.Inthisexample,Nis 10.

Fig.8.SPICEsimulationsoftheproposedphase-shiftmethod.Theinterpolation factoris8.

(4)

Fig.9. ThecircuitdiagramofphaseshiftshowninFig.4. isderivedas RM=Rtotal×



1 1+cot[(M/N)×90◦]− M−1



i=1 1 1+cot[(i/N)×90◦]



(3) whereMrepresentstheassignednumberofeachresistor,andRtotal

isthetotalresistanceofaresistorchain.By(1)–(3),thephasescan beeasilydividedbyaresistorchain.Forexample,ifNis10andRtotal

is1M,10resistorsofR1toR10are137k,109k,92k,83k,

79k,79k,83k,92k,109k,and137k,respectively.As showninFig.8,eightphaseswithinaresistorchainaresuccessfully shifted.

Incircuitimplementation,Fig.9showsthecircuitdiagramof phaseshiftshowninFig.4.ThesignalsofV1toV19withdifferent

phasesaregeneratedandconnectedtotheinputsofcomparators. Fig.10demonstratesthecircuitdiagramofdigitalprocessing cir-cuitsshowninFig.4.ThesignalsofU0toU19aretheoutputsignals

ofcomparators.Theyareusedtoperformdigitalprocessing proce-duresthroughthecircuitsofinterpolationAandB,andthecircuit ofzaisAandB.ThecircuitdiagramofinterpolationAandBis dis-playedinFig.11.TheoutputsignalsofAout,Boutcanbeattained

byperformingXORlogicgate.ThecircuitdiagramofzaisAandB isbuiltbya3-inputANDlogicgate.Inthedesignofcomparators, noiseisalwaysaconsiderableproblem.Inordertodecrease erro-neousjudgements,comparatorsneedtohaveahysteresisvoltage. ThecircuitisdisplayedinFig.12,andthehysteresisisderivedas VSPH=Vin+−Vin−=gm ×Iss (ˇB/ˇA)−1

B/ˇA)+1 forˇB≥ˇA (4)

Fig.10.ThecircuitdiagramofdigitalprocessingcircuitsshowninFig.4.

and

VSPL=−VSPH,ˇB=ˇ6=ˇ7,ˇA=ˇ5=ˇ8 (5)

wheregmisthetransconductanceoftheMOSFET,theparameter ofˇisdefinedasnCoxW/L,andVSPLandVSPHarehalfof

(5)

Fig.12. Circuitschematicofthecomparator.

Fig.13.SPICEsimulationsofthehysteresisofthecomparator.

Fig.15.SPICEsimulationsofthecurrenttovoltageconverter.

sisvoltage.Aftersimulations,thehysteresisis24mVasshown

inFig.13.Thedesignspecificationsofcomparatorsarelistedin Table1.Fig.14demonstratesthecircuitschematicofthecurrent tovoltageconverterconnectedtoopticalincrementalsensors.The currentsgeneratedbysensorsareI±A,I±B,andI±R.Convertedby thecurrenttovoltageconverter,eachcorrespondingvoltagesof VA,VA−,andVB,areobtainedasshowninFig.15.

Finally,thewholecircuitsarebuiltandsimulated.Theoutput signalsofAout,Bout,andZoutundertheinterpolationfactorof10

and5aredemonstratedinFigs.16and17,respectively.As demon-strated,theseoutputsaresuccessfullyattained.Thetestofintegral nonlinearity(INL)anddifferentialnonlinearity(DNL)areverifiedin

(6)

Fig.16.SPICEsimulationsofAout,Bout,andZoutundertheinterpolationfactorof10.

Fig.18.Bothofthemarealllessthan1count,andindicatethatthe proposedchiphasagoodlinearity.Althoughtheinterpolation fac-torcanjustbechosen5or10,theoutputsundertheinterpolation factorof40canbeeasilyobtainedbyperformingtheXORlogic func-tionofAout(IF=10)andBout(IF=10).However,itisoptionalforuser

choice.Allthefunctionsandperformanceoftheproposedphaseto digitaltransducerforopticalincrementalsensorsaresuccessfully testedandproventhroughSPICEsimulations.

4. Measurementresults

Fig. 19 demonstrates the microphotograph of the proposed CMOSphasetodigitaltransducerforopticalincrementalsensors. Inthiswork,theCMOS0.5␮m2P2Mprocesswith5Vpower sup-plyischosenduetoitslowercosttofabricatethischip.Thechip areaincludingESDI/Opadsis2010×1502␮m2.Thepower

con-sumptionis50mW.Themeasurementsetupisbuiltasshownin Fig.20.Alogicanalyzeristogeneratedigitalcodesfromtwosine signalsthathavethephasedifferenceof90◦.Undoubtedly,these twocodesalsohavethephasedifferenceof90◦.Thecurrentsof ±IAand±IBareobtainedfromadigitaltoanalogconverter(DAC)

andvoltagetocurrentconvertersmarkedasv2i.Thecurrentof±IR

canbeeasilygeneratedbyasignalgenerator.Fig.21demonstrates

Fig.18. TheINLandDNL.

Fig.19.ThemicrophotographoftheproposedCMOSphasetodigitaltransducerfor opticalincrementalsensorsis2010× 1502␮m2includingESDI/Opads.

themeasurementresultsundertheinterpolationfactorof5and 10,respectively.Thesignalfrequencyis50kHz.Asshown,the out-putsignalsaresuccessfullyproven.ThetestoftheINLandDNLis displayedinFig.22.TheINLislessthan0.8countandDNLisless than0.5count.Althoughthevalueisslightlyincreased,itisstill

(7)

Fig.20.Themeasurementsetup.

Table2

SummaryonthecharacteristicsoftheproposedCMOSphasetodigitaltransducer foropticalincrementalsensors.

Technology 0.5␮mCMOS2P2M

Powersupply 5V

Interpolationfactor 5,10,40(optional) Signalamplitude ±0.2to±0.8V Signalbandwidth 50kHz Samplingfrequency Donotneed Powerconsumption 50mW Physicallayoutoftheproposedchip 2010×1502␮m2 Applicationfield Opticalincrementalsensors

Fig.21.Themeasurementresultsundertheinterpolationfactorof(a)5and(b)10. Thesignalfrequencyis50kHz.

Fig.22.TheINLandDNLofthemeasurementresultsundertheinterpolationfactor of10.Thesignalfrequencyis50kHz.

Fig.23.Themeasurementresults(a)Aout,(b)Aout,Boutand(c)Zoutoftheproposed chipoperatedwithopticalincrementalsensors.Thefrequencyofoptical incremen-talsensorsis1kHz.

(8)

Table3

Comparisonstopreviousjobs.

[4] [6] Thiswork

Technology 1.2␮mCMOS2P2M 0.5␮mCMOS2P2M

Interpolationmethodology PLL-based ADC-based Comparator-based

Samplingfrequency Donotneed(VCOisapplied) 30MHz Donotneed

Interpolationfactor 70 5,10,25,50 5,10,40(optional)

Outputformat Sinesignals Countercode Pulsestream

Calibrationmethod None None Provided

Chiparea N.A. 13mm2 3mm2

Differentialnonlinearity N.A. <0.3counts <0.5counts

Integralnonlinearity N.A. <0.5counts <0.8counts

lessthan1count.Thatmeansthatthenon-linearityerrorisallless than9◦undertheinterpolationnumberof10.Theproposedchip canattainacharacteristicofgoodlinearity.

Finally,measurementresultsoftheproposedchipoperatedwith opticalincrementalsensorsareperformed.Thefrequencyof opti-calincremental sensorsis 1kHz. Theinterpolation factor is 10. InFig.23,theoutputsofAout,Bout,andZoutarealsosuccessfully

obtained.ThecharacteristicsoftheproposedCMOSphaseto dig-italtransducerforopticalincrementalsensorsaresummarizedin Table2.Thecharacteristicsoftheproposedchiparecomparedwith previousjobsandorganizedinTable3.

5. Conclusion

ACMOSphasetodigitaltransducerforopticalincremental sen-sorsisnewlyproposed. Thischipadoptsa proposedphase-shift method,whichcaneasilygeneratephaseshiftsofsignalsbyusing aresistorchain.Owingtothefactthattheoutputsoftheproposed chiparedirectlydigitized,itdoesnotneedaROMcomponentanda fastercounterasusedinthestructuresofADC-basedandPLL-based interpolations.Theoutputsignalscouldbealsoeasilysentovera widerangeoftransmissionmedia,suchasPSN,radio,optical,IR, ultrasonic,etc.Allthefunctionsandperformanceoftheproposed CMOSphasetodigitaltransducerforopticalincrementalsensors aresuccessfullytestedandproventhroughmeasurements.Inthe future,thedevelopedtechniqueswillbeadaptivelydesignedinto opticaldevices,suchasopticalencoders.

Acknowledgements

TheauthorsacknowledgeCenterforMeasurementStandardsof IndustrialTechnologyResearchInstitutefortheirsupportinoptical incrementalsensorsandalsoacknowledgeMs.AliceKao,Mr. Yu-YuanChenofCenterforMeasurementStandardsfortheirtechnical supportinmeasurementtesting.

References

[1]K.Araki,T.Tanahashi,S.Kondo,Phase-lock-loopspeedcontrolusinga micro-computer, in:Proceedingsof 18AnnualSymposium Incremental Motion ControlSystemandDevices,1989,pp.29–38.

[2]J.N.Lygouras,K.A.Lalakos,P.G.Ysalides,High-performanceposition detec-tionandvelocityadaptivemeasurementforclosed-looppositioncontrol,IEEE TransactionsonInstrumentationandMeasurement47(August(4))(1998) 978–985.

[3]C.F.Christiansen,R.Battaiotto,D.Fernandez,E.Tacconi,Digitalmeasurementof angularvelocityforspeedcontrol,IEEETransactionsonIndustrialElectronics 36(February(1))(1989)79–83.

[4]T.Emura,L.Wang,Ahigh-resolutioninterpolatorforincrementalencoders basedonthequadraturePLLmethod,IEEETransactionsonIndustrial Electron-ics47(February(1))(2000)84–90.

[5]D.A.Garrett,MuirheadVactricComponentsLtd,Interpolationmethodandshaft angleencoder,U.S.A.Patent5,041,829(1991).

[6] M.Krau␤,U.Leuschner,H.G.Schniek,A.Hilbert,A5VCMOSchipfor interpola-tionofsine/cosinesignals,in:ProceedingsofIEEEESSCIRC,1997,pp.336–339.

[7] E.Schwefel,J.Heidenhain,GmbH.Traunreut,Germany,Interpolationapparatus fordigitalelectronicpositionmeasuringinstrument,U.S.A.Patent4,225,931 (1980).

[8]E.Schwefel,J.Heidenhain,GmbH.Traunreut,Germany,Methodofinterval interpolation,U.S.A.Patent4,462,083(1984).

[9] W.F.N.Stephens,M.E.Pleydell,Renishawplc,Gloucestershire,UnitedKingdom, Interpolationapparatus,U.S.A.Patent4,949,289(1990).

[10] H.Rieder,M.Schwaiger,RSF-ElektronikGesellschaftm.b.H.Tarsdorf,Austria, Methodofelectronicallycorrectingpositionerrorsinanincremental measur-ingsystemandmeasuringsystemforcarryingoutthemethod,U.S.A.Patent 5,021,650(1991).

[11] C.T.Chiang,K.C.Hsieh,Y.C.Huang,ACMOSphasetodigitalconverterforoptical encoders,in:ProceedingsofIEEEInternationalInstrumentationand Measure-mentTechnologyConference,I2MTC’11,May2011,pp.1368–1371.

[12]J.M.Chou,Y.T.Hsieh,J.T.Wu,A125MHz8bdigital-to-phaseconverter,in: Pro-ceedingsofIEEEInternationalSolid-StateCircuitsConference,February2003, pp.436–437.

[13]P.K.Hanumolu,V.Kratyuk,G.Y.Wei,U.K.Moon,Asub-picosecondresolution 0.5–1.5GHzdigital-to-phaseconverter,IEEEJournalofSolid-StateCircuits43 (February(2))(2008)414–424.

[14]http://www.itri.org.tw/chi/tech-transfer/04.asp?RootNodeId=040&NodeId= 041&id=1066.

Biographies

Cheng-TaChiang(S’00-M’05)wasborninTaiwan,R.O.C.,in1977.Hereceivedthe B.S.degreeinelectronicsengineeringfromChungYuanChristianUniversity,Jhongli, Taiwan,in1999,theM.S.degreeinbiomedicalengineeringfromtheNationalCheng KungUniversity,Tainan,Taiwan,in2001,andthePh.D.degreeinelectronics engi-neeringfromtheNationalChiaoTungUniversity,Hsinchu,Taiwan,in2006.

HewasavisitingscholarwiththeDepartmentofElectricalandComputer Engi-neering,TheJohnsHopkinsUniversity,Baltimore,MD,fromOctober1,2004until November30,2005.HewasincludedinMarquisWho’sWhoinScienceand Engi-neering2006–2007andMarquisWho’sWhointheWorld2008.Since2007,hewasa reviewcommitteememberoftheNationalChipImplementationCenter,Hsinchu. From2006to2010,hewasamemberoftechnicalstaffatIndustrialTechnology ResearchInstitute,Hsinchu,andwasresponsibleforNyquist&OversampledA/D converters,andMEMScircuits.Since2010,hewaswithNationalChiaYiUniversity, Chiayi,Taiwan,andservicedasanassistantprofessorintheDepartmentofElectrical Engineering.Hismainresearchinterestsincludeanalogintegratedcircuits, biomed-icalelectronics,imagesensorcircuitsandsystems,sensorsignalconditioningand transducers,NyquistA/Dconverters,andhigh-resolutiondelta-sigmamodulator.

Dr.ChiangisaconferencereviewerforIEEEconferencesofI2MTC2008,ISIEA

2009–2011,PECON2010,IAPEC2011,ICEDSA2011,ICBEIA2011,PEOCO2011,CSNT 2011,andajournalreviewerfortheIEEETransactionsonInstrumentationand Mea-surement,IEEEIndustrialElectronics,IEEESensorsJournal,MicroelectronicsJournal, EURASIPJournalonAdvancedinSignalProcessing,andaneditorialadvisoryboard memberfortheSensors&TransducersJournal.

Kaun-ChunHsiehwasborninTaiwan,R.O.C.,in1976.HereceivedtheB.S.degreein electricalengineeringfromNationalTaiwanUniversityandtheM.S.degreein elec-tronicsengineeringfromNationalChiaoTungUniversity,Taiwan,R.O.C.,in1998and 2001,respectively.HecurrentlyservicesinGlobalUnichipCorporation,Hsinchu, Taiwan,R.O.C.

Hismainresearchinterestshavebeeninanalogintegratedcircuits,andIP ser-vices.

Yu-ChungHuangreceivedtheM.S.degreeinelectricalengineeringandPh.D.degree inprocessengineeringfromtheTechnologyUniversityofBerlin,Berlin,Germany, in1982and1985,respectively.

Since1985,hehasbeenaProfessorintheDepartmentofElectronics,National ChiaoTungUniversity,Hsinchu,Taiwan,R.O.C.Hisresearchinterestsaresensors andmeasuringtechnologies.

Prof.HuangisamemberoftheCommitteeoftheChineseMetrologySocietyand amemberoftheMicromechanicalScienceInstitute,R.O.C.

數據

Fig. 2. Optical incremental sensors and the proposed phase to digital transducer.
Fig. 3. I A , I B , and I R are the output currents of optical incremental sensors. A out , B out , Z out are the outputs of the proposed phase to digital transducer
Fig. 9. The circuit diagram of phase shift shown in Fig. 4. is derived as R M = R total ×  1 1 + cot[(M/N) × 90 ◦ ] − M−1  i=1 11+ cot[(i/N) × 90 ◦ ]  (3) where M represents the assigned number of each resistor, and R total
Fig. 14. Circuit schematic of the current to voltage converter connected to optical incremental sensors.
+3

參考文獻

相關文件

A multi-objective genetic algorithm is proposed to solve 3D differentiated WSN deployment problems with the objectives of the coverage of sensors, satisfaction of detection

Abstract—We propose a multi-segment approximation method to design a CMOS current-mode hyperbolic tangent sigmoid function with high accuracy and wide input dynamic range.. The

Abstract - A 0.18 μm CMOS low noise amplifier using RC- feedback topology is proposed with optimized matching, gain, noise, linearity and area for UWB applications.. Good

“IEEE P1451.2 D2.01 IEEE Draft Standard for A Smart Transducer Interface for Sensors and Actuators - Transducer to Microprocessor Communication Protocols

The advantages of using photonic crystal fibers (PCFs) as gas sensors include large overlap and long optical path interaction between the gas and light mode field and only a

Sugii, “Junction profile engineering with a novel multiple laser spike annealing scheme for 45-nm node high performance and low leakage CMOS technology,” in IEDM

First we explain how to implement CMOS current-mode quadratic circuits and design the proposed circuit in the way of multiple corrections.. We use the best

As a result, the proposed framework and the proposed Pseudo One-time Pad can be considered to be the alternative in implementations of digital rights