• 沒有找到結果。

Section 3.2 The Product and Quotient Rules

N/A
N/A
Protected

Academic year: 2022

Share "Section 3.2 The Product and Quotient Rules"

Copied!
1
0
0

加載中.... (立即查看全文)

全文

(1)

Section 3.2 The Product and Quotient Rules

44. If g(x) = exx, find g(n)(x).

Solution:

186 ¤ CHAPTER 3 DIFFERENTIATION RULES 41. () =2

1 +  ⇒ 0() =(1 + )(2) − 2(1)

(1 + )2 = 2 + 22− 2

(1 + )2 = 2+ 2

2+ 2 + 1 ⇒

00() = (2+ 2 + 1)(2 + 2) − (2+ 2)(2 + 2)

(2+ 2 + 1)2 = (2 + 2)(2+ 2 + 1 − 2− 2) [( + 1)2]2

= 2( + 1)(1)

( + 1)4 = 2 ( + 1)3, so 00(1) = 2

(1 + 1)3 = 2 8 = 1

4.

42. () =

⇒ 0() = · 1 −  · 

()2 = (1 − )

()2 = 1 − 

00() = · (−1) − (1 − )

()2 = [−1 − (1 − )]

()2 =  − 2

000() = · 1 − ( − 2)

()2 = [1 − ( − 2)]

()2 = 3 − 

(4)() = · (−1) − (3 − )

()2 = [−1 − (3 − )]

()2 =  − 4

. The pattern suggests that ()() = ( − )(−1)

. (We could use mathematical induction to prove this formula.) 43. We are given that (5) = 1, 0(5) = 6, (5) = −3, and 0(5) = 2.

(a) ()0(5) =  (5)0(5) + (5)0(5) = (1)(2) + (−3)(6) = 2 − 18 = −16

(b)



0

(5) =(5)0(5) − (5)0(5)

[(5)]2 = (−3)(6) − (1)(2)

(−3)2 = −20 9

(c)



0

(5) = (5)0(5) − (5)0(5)

[ (5)]2 = (1)(2) − (−3)(6) (1)2 = 20 44. We are given that (4) = 2, (4) = 5, 0(4) = 6, and 0(4) = −3.

(a) () = 3() + 8() ⇒ 0() = 30() + 80(), so

0(4) = 30(4) + 80(4) = 3(6) + 8(−3) = 18 − 24 = −6.

(b) () = () () ⇒ 0() =  () 0() + () 0(), so

0(4) =  (4) 0(4) + (4) 0(4) = 2(−3) + 5(6) = −6 + 30 = 24.

(c) () =  ()

() ⇒ 0() = () 0() − () 0() [()]2 , so

0(4) = (4) 0(4) − (4) 0(4)

[(4)]2 = 5(6) − 2(−3)

52 = 30 + 6 25 = 36

25. (d) () = ()

 () + () ⇒

0(4) = [ (4) + (4)] 0(4) − (4) [0(4) + 0(4)]

[ (4) + (4)]2 = (2 + 5) (−3) − 5 [6 + (−3)]

(2 + 5)2 = −21 − 15

72 = −36 49

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

50. If f (2) = 10 and f0(x) = x2f (x) for all x, find f00(2).

Solution:

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 187 45. () = () ⇒ 0() = 0() + ()= [0() + ()]. 0(0) = 0[0(0) + (0)] = 1(5 + 2) = 7

46.



()

= 0() − () · 1

2 ⇒ 



()

=2

= 20(2) − (2)

22 = 2(−3) − (4)

4 = −10

4 = −25 47. () = () ⇒ 0() = 0() +  () · 1. Now (3) = 3(3) = 3 · 4 = 12 and

0(3) = 30(3) +  (3) = 3(−2) + 4 = −2. Thus, an equation of the tangent line to the graph of  at the point where  = 3 is  − 12 = −2( − 3), or  = −2 + 18.

48. 0() = 2 () ⇒ 00() = 20() +  () · 2. Now 0(2) = 22 (2) = 4(10) = 40, so

00(2) = 22(40) + 10(4) = 200.

49. (a) From the graphs of  and , we obtain the following values: (1) = 2 since the point (1 2) is on the graph of ;

(1) = 1since the point (1 1) is on the graph of ; 0(1) = 2since the slope of the line segment between (0 0) and (2 4)is 4 − 0

2 − 0 = 2; 0(1) = −1 since the slope of the line segment between (−2 4) and (2 0) is 0 − 4

2 − (−2) = −1.

Now () = ()(), so 0(1) =  (1)0(1) + (1) 0(1) = 2 · (−1) + 1 · 2 = 0.

(b) () = ()(), so 0(5) = (5)0(5) − (5)0(5) [(5)]2 = 2

13

− 3 · 23

22 = −83

4 = −2 3 50. (a)  () =  () (), so 0(2) =  (2) 0(2) + (2) 0(2) = 3 ·24 + 2 · 0 = 32

(b) () =  ()(), so 0(7) = (7) 0(7) −  (7) 0(7)

[(7)]2 = 1 · 14− 5 ·

23

12 = 1

4+10 3 = 43

12 51. (a)  = () ⇒ 0= 0() + () · 1 = 0() + ()

(b)  = 

() ⇒ 0= () · 1 − 0()

[()]2 = () − 0() [()]2 (c)  = ()

 ⇒ 0= 0() − () · 1

()2 = 0() − ()

2 52. (a)  = 2 () ⇒ 0= 20() +  ()(2)

(b)  =  ()

2 ⇒ 0= 20() − ()(2)

(2)2 = 0() − 2()

3

(c)  = 2

 () ⇒ 0=  ()(2) − 20() [ ()]2 (d)  = 1 +  ()

√ ⇒

0=

√ [0() +  ()] − [1 + ()] 1 2√

 (√

 )2

= 320() + 12 () −12−121212 ()

 · 212

212 =  () + 220() − 1 232

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

58. Use the method of Hint to compute Q0(0), where

Q(x) = 1 + x + x2+ xex 1 − x + x2− xex

Hint: Instead of finding Q0(x) first, let f (x) be the numerator and g(x) the denominator of Q(x) and compute Q0(x) from f (0), f0(0), g(0), and g0(0).

Solution:

188 ¤ CHAPTER 3 DIFFERENTIATION RULES 53. If  = () = 

 + 1, then 0() = ( + 1)(1) − (1)

( + 1)2 = 1

( + 1)2. When  = , the equation of the tangent line is

 − 

 + 1 = 1

( + 1)2( − ). This line passes through (1 2) when 2 − 

 + 1 = 1

( + 1)2(1 − ) ⇔ 2( + 1)2− ( + 1) = 1 −  ⇔ 22+ 4 + 2 − 2−  − 1 +  = 0 ⇔ 2+ 4 + 1 = 0.

The quadratic formula gives the roots of this equation as  = −4 ±

42− 4(1)(1)

2(1) = −4 ±√

12

2 = −2 ±√3, so there are two such tangent lines. Since



−2 ±√ 3

= −2 ±√ 3

−2 ±√

3 + 1 = −2 ±√ 3

−1 ±√

3·−1 ∓√ 3

−1 ∓√ 3

= 2 ± 2√ 3 ∓√

3 − 3

1 − 3 = −1 ±√ 3

−2 = 1 ∓√ 3 2 , the lines touch the curve at 

−2 +√

3123

≈ (−027 −037) and 

−2 −√

31 +23

≈ (−373 137).

54.  = − 1

 + 1 ⇒ 0= ( + 1)(1) − ( − 1)(1)

( + 1)2 = 2

( + 1)2. If the tangent intersects the curve when  = , then its slope is 2( + 1)2. But if the tangent is parallel to

 − 2 = 2, that is,  = 12 − 1, then its slope is12. Thus, 2

( + 1)2 = 1

2 ⇒

( + 1)2= 4 ⇒  + 1 = ±2 ⇒  = 1 or −3. When  = 1,  = 0 and the equation of the tangent is  − 0 = 12( − 1) or  =12 − 12. When  = −3,  = 2 and the equation of the tangent is  − 2 = 12( + 3)or  = 12 +72.

55.  =

 ⇒ 0= 0− 0

2 . For () =  − 33+ 55, 0() = 1 − 92+ 254, and for () = 1 + 33+ 66+ 99, 0() = 92+ 365+ 818.

Thus, 0(0) = (0)0(0) − (0)0(0)

[(0)]2 = 1 · 1 − 0 · 0

12 = 1

1 = 1.

56.  =

 ⇒ 0= 0− 0

2 . For () = 1 +  + 2+ , 0() = 1 + 2 + + , and for () = 1 −  + 2− , 0() = −1 + 2 − − .

Thus, 0(0) =(0)0(0) − (0)0(0)

[(0)]2 = 1 · 2 − 1 · (−2)

12 = 4

1 = 4.

57. If  () denotes the population at time  and () the average annual income, then  () =  ()() is the total personal income. The rate at which  () is rising is given by 0() =  ()0() + ()0() ⇒

0(1999) =  (1999)0(1999) + (1999)0(1999) = (961,400)($1400yr) + ($30,593)(9200yr)

= $1,345,960,000yr + $281,455,600yr = $1,627,415,600yr So the total personal income was rising by about $1.627 billion per year in 1999.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Evaluate the surface

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. By induction, the formula holds for all

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All