• 沒有找到結果。

目錄 單元二:根式的運算 ...................................... 1

N/A
N/A
Protected

Academic year: 2022

Share "目錄 單元二:根式的運算 ...................................... 1"

Copied!
58
0
0

全文

(1)

目錄

單元二:根式的運算 ... 1

課文 A:根式的乘除 ... 1

課文 B:最簡根式與分母有理化 ... 8

課文 C:根式的加減 ... 18

課文 D:根式的四則運算 ... 30

單元三:畢式定理 ... 38

課文 A:畢式定理 ... 38

課文 B:平面上兩點間的距離 ... 51

(2)
(3)

1

單元二:根式的運算

課文 A:根式的乘除

在這個單元中,我們要學根式的運算!

什麼是根式呢?

根式就是指含有根號的數或式子,像是 √5、√2 × √5、√12 ÷ √2 、

√27 − √12…等都叫根式。

回想一下,我們在國一學代數式時,有一些簡記的方式,而在根式當 中,也可以利用這些簡記規則去簡記一些根式。

例如:

2 × 𝑥 簡記成 2𝑥;2 × √3 就可以簡記成 2√3。

(−1) × 𝑥 簡記成 −𝑥;(−1) × √7 就可以簡記成 −√7。

4

5× 𝑥 簡記成 4

5𝑥 或是 4𝑥

5;4

5× √3 簡記成 45√3 或是 4√35

接下來,我們要看根式的乘法運算。

√3 × √7 這個式子會等於什麼?

我們先將它平方後變成整數,再開根號還原回來比較看看!

(√3 × √7)2 = (√3 × √7) × (√3 × √7) = √3×

√7

×

√3

×

√7

= (√3×

√3) × (√7

×

√7) = (√3)

2× (√7)2 = 3 × 7

有兩個 √3 、兩個 √7!

我們換位置乘一下!

(4)

2

我們將 √3 × √7 平方後,發現 (√3 × √7)2 = 3 × 7;

再將 (√3 × √7)2 開根號還原回去 √3 × √7 ,而等號右邊 3 × 7 開根號 就會是 √3 × 7。

所以就會得到 √3 × √7 = √3 × 7。

從上面的這個例子,我們可以得到一個結論:

若 𝑎、𝑏 均大於等於 0,則 √𝑎 × √𝑏 = √𝑎 × 𝑏

我們來試試看其他題:

Ex1.計算下列各根式的乘積:

(1) √7 × √13 (2) √6 × √5

2 (3) √9

10× √5

2

解:

(1) √7 × √13 = √7 × 13 =

√91

(2) √6 × √5

2=

6 3 5

 2

=

√15

(3) √9

10× √5

2 =

9

10 2

 5

2

= √9

4 注意!√9

4 還可以繼續化簡,√9

4= √(3

2)2 = 3

2

(5)

3

Ex2.計算下列各根式的乘積:

(1) 2√7 × 5√3 (2) √7

5 × 8√5 (3) 25√11 ×34√3 解題思維:

這題根式乘積的計算已經跟上題有些不一樣了,每個根號前面多 了一個數。

我們來想一下,從前面根式的簡記可以知道:2√7 = 2 × √7 ; 5√3 = 5 × √3。

所以我們計算 2√7 × 5√3 時,

2√7 × 5√3 = 2 × √7 × 5 × √3 = 2 × 5 × √7 × √3

= (2 × 5) × (√7 × √3) = 10 × √21 = 10√21 仔細看這個計算的過程,其實會發現這個根式乘積的計算就是

“根號外面乘根號外面,根號裡面乘根號裡面”,例如在計算 2√7×

5√3 時,根號外面乘根號外面就是 2

×

5,根號裡面乘根

號裡面就是 7×

3

,所以 2√7×

5√3

= (2×

5)√7

×

3

= 10√21。

解:

(1) 2√7×

5√3

= (2×

5)√7

×

3

=

10√21

(2) √7

5 其實就是 1

5√7,根號外面就是 15 ,根號裡面就是 7。

√7

5 × 8√5 = 15√7×

8√5

= (1

8) √7

×

5

=8

5

√35

(3) 2

5√11×3

4√3= = 3

10

√33

(6)

4

看完根式的乘法運算後,來看一下根式的除法運算。

我們如果要計算√11 ÷ √2 這個式子呢?

回憶一下,我們之前有學過除法與分數的關係,例如 3

4 可以想像成有 兩種唸法,一種是由下往上唸,唸成「4 分之 3」;而另一種就是由上 往下唸,唸成「3 除以 4」。

這個用來除法運算換成分數或分數換成除法運算都非常好用,所以 √11 ÷ √2 其實就是 √11

√2。 這個分數會等於什麼?

我們先將它平方後變成整數,再開根號還原回來比較看看!

(√11

√2)2 = √11

√2 ×√11

√2 = √11×√11

√2×√2 = (√11)2

(√2)2 = 11

2 我們將 √11

√2 平方後,發現 (√11

√2)2 = 11

2; 再將 (√11

√2)2 開根號還原回去 √11

√2 ,而等號右邊 11

2 開根號就會是 √11

2。 所以就會得到 √11

√2 = √11

2 。 而 11

2 其實就是 11 ÷ 2 ,所以 √11 ÷ √2 = √11

√2 = √11

2 = √11 ÷ 2 所以我們得到一個結論:

(7)

5

若 𝑎 ≥ 0、𝑏 > 0 ,則 √𝑎 ÷ √𝑏 = √𝑎

√𝑏 = √𝑎𝑏 = √𝑎 ÷ 𝑏

我們來試試看其他題:

Ex3.計算下列各式:

(1) √48 ÷ √12 (2) √4

3÷ √2

9 (3) √12 ÷ √4

5

解:

(1) √48 ÷ √12 = √48 ÷ 12 = √4 =

2

=

√6

(2) √4

3÷ √2

9 = √4

2

9 =

=

√15

(3) √12 ÷ √4

5= √12 ÷4

5=

√4還可以化簡為 2 !

(8)

6

重點提問

1. 請問根式的乘法怎麼運算?

請用這個運算規則計算 5√6 × 3√5。

2. 請問根式的除法怎麼運算?

請用這個運算規則計算 √36

7 ÷ √7。

(9)

7

A.隨堂練習

1.計算下列各根式的乘積:

(1) √6 × √35 (2) √14 × √3

7 (3) √6

5× √10

3

2.計算下列各根式的乘積:

(1) 3√5 × 2√2 (2) √23 × 9√3 (3) 32√5 ×49√7

3.計算下列各式:

(1) √98 ÷ √2 (2) √7

15÷ √7

30 (3) √18 ÷ √6

5

還是不太懂,

請看下面影片(1)

https://www.youtube.com/

watch?v=vbbYeHt0BLk

還是不太懂,

請看下面影片(2)

https://www.youtube.com/

watch?v=kR5DsEqRqgo

(10)

8

單元二:根式的運算

課文 B:最簡根式與分母有理化

在根式的運算中,我們常常會希望式子可以盡量的簡單清楚而且有一 致性,所以我們就會借用最簡根式來做化簡處理。

什麼是最簡根式呢?就是指根式已經化簡到無法再化簡的根式!

像是 √8 是可以繼續化簡的:

√8

=

√22× 2

=

√22× √2 = 2 × √2 = 2√2

2√2 已經無法再化簡了,所以我們就稱 2√2 是 √8 的最簡根式。

又像是 √12:

√12 = √22× 3 = √22 × √3 = 2 × √3 = 2√3 ,

2√3 已經無法再化簡了,所以我們就稱 2√3 是 √12 的最簡根式。

我們來練習看看!

8 可以拆成 22× 2

根式的乘法運算:√𝑎 × √𝑏 = √𝑎 × 𝑏;

這個等式反過來看,即√𝑎 × 𝑏 = √𝑎 × √𝑏

(11)

9

Ex1.將下列各式化為最簡根式:

(1) √72 (2) √80 (3) √360 解題思維:

我們在化簡根式的時候,只要是完全平方數就可以再往外提出去,

目標就是要提到不能再提為止。所以我們在對根號內的數因數分 解時,可以盡量用完全平方數去分解。

解:

√72 = √4 × 9 × 2 = √4 × √9 × √2 = 2 × 3 × √2

= 6√2

而第(2)小題

√80 = √4 × 4 × 5 = √4 × 4 × √5 = 4 × √5 =

4√5

(3) √360 = √36 × 10 =

6√10

剛好兩個 4 !

(12)

10

Ex2. 將下列各式化為最簡根式:

(1) √22× 33× 5 (2) √24× 35 (3) √24× 54 解題思維:

跟上一題一樣,我們在化簡根式的時候,只要是完全平方數就可 以再往外提出去,這一個過程我們可以利用「集滿兩個換出去」

這個口訣記。

這個口訣是什麼意思呢?

像是 √22× 33× 5 = √22× 32 × 3 × 5 = √22× √32× √3 × 5

= 2 × 3 × √15 = 6√15 我們利用這個口訣,可以這樣想:

√22× 33× 5 =

2

×

3

× √3×

5

= 6√15

再例如 √24× 35

√24 × 35 =

2

2 ×

3

2× √3= 4 × 9 × √3 = 36√3 根號裡面有 2 個 2、3 個 3、1 個 5

根號裡面有 4 個 2、5 個 3 原本裡面 2 個 2,

換出去外面變成 1 個 2 原本裡面 3 個 3,

其中 2 個 3 換出去外面變成 1 個 3;

根號裡面留下 1 個 3。

原本裡面 1 個 5,

集滿兩個才能換出去,

所以繼續留在裡面。

原本裡面 4 個 2,

換出去外面變成 2 個 2

原本裡面 5 個 3,

其中 4 個 3 換出去外面變成 2 個 3;

根號裡面留下 1 個 3。

(13)

11

解:

(1) √22× 33× 5 = 2 × 3 × √15 =

6√15

(2) √24× 35 = 22× 32× √3 =

36√3

(3) √24× 54 = 22× 52 =

100

Ex3.計算下列各式,並將結果化為最簡根式:

(1) √6 × √8 × √12 (2) √10 × √14 × √98 解:

(1) √6 × √8 × √12 = √6 × 8 × 12 = √6 × (4 × 2) × (2 × 6)

= √6 × 4 × 4 × 6 = 6 × 4 =

24

說明:

√6 × √8 × √12 根據根式的乘法運算就是 √6 × 8 × 12 ,

而我們要化簡這個根式並不需要乘出來後再分解,我們只要朝著

「集滿兩個換出去」去進行分解就可以了。

√6 × 8 × 12

從分解當中可以發現有 2 個 6 ,其他 4 × 2 × 2 可以湊成 2 個 4,

「集滿兩個換出去」,所以換出去變成 1 個 6 、1 個 4,也就是6 × 4 = 24。

想一想有沒有其他分法呢?

6× 2 4 × 2

(14)

12

(2) √10 × √14 × √98 = √10 × 14 × 98

= √(5 × 2) × (2 × 7) × (7 × 14) = 2 × 7 × √5 × 14 =

14√70

說明:

√10 × √14 × √98 根據根式的乘法運算就是 √10 × 14 × 98 , 而我們要化簡這個根式並不需要乘出來後再分解,我們只要朝著

「集滿兩個換出去」去進行分解就可以了。

√10 × 14 × 98

從分解當中可以發現有 2 個 2、2 個 7,可以集滿兩個換出去,

而其他 5 × 14 = 70 不能拆成一對一對。

所以換出去根號外面變成 1 個 2 、1 個 7,70 留在根號裡面不能 換出去,也就是2 × 7 × √5 × 14 = 14√70。

除了上面那種「根號內仍有可以提出到根號外的因數」的根式可以繼 續化簡以外,還有兩大類可以繼續化簡:

(一) 分母有根式,例如:2

√3、√3

√50 等…。

(二) 根號內仍有小數或分數,例如:√2

3、√0.2 等…。

這兩類在化簡的時候,我們的目標是想將分母的根式消去,讓它成為 有理數,這個過程我們稱為分母有理化。

7

× 14 2×

7

5 ×2

(15)

13

最簡單的方法就是,我們可以利用「 √𝑎 × √𝑎 = 𝑎」將分母有理化。

舉例來說,2

√3 的分母是 √3 ,那我們知道 √3 × √3 = 3,所以我們分 母再乘一個 √3 就可以將分母的根式消掉了。但是不能只單單乘以分 母,我們要維持分數的相等,因此分子分母應該要同時都乘以 √3 。 所以 2

√3= √3

√3×√3= 2√3

3 。那麼 2√33 就是 2

√3 的最簡根式了!

來看一題範例吧!

Ex4. 將 √3

√50 化為最簡根式。

解題思維:

√3

√50的分母是 √50 ,那我們知道 √50 × √50 = 50,所以分子分母 應該要同時都乘以 √50 。

√3

√50 = √3×√50

√50×√50 =√150

50

= 5 6

5010 = √6

10 除了這樣算以外,

我們知道分母是 √50 = √52× 2 ,所以其實只要再乘 √2 就可以 將分母有理化了!

√3

√50 = √3×√2

√52×2×√2= √6

5×2 =√6

10 會發現答案一樣!

解:√3

√50 = √3×√2

√52×2×√2= √6

5×2 =√6

10

分子 √150 = √25 × 6 = 5√6 , 所以還可以化簡。

(16)

14

如果根號內仍有分數怎麼辦呢?

Ex5. 將下列各式化為最簡根式:

(1) √2

3 (2) √5

18

解題思維:

其實就是利用分母有理化的方式去進行化簡。

像是 √2

3 可以化成 √2

√3 ,然後要消除分母的根式就是分子分母同乘 以 √3 ,就可以繼續算下去了!

解:(1) √2

3= √2

√3= √2×√3

√3×√3= √6

3

(2) √5

18 = √5

√18 = √5×√2

√32×2×√2 =√10

6

如果根號內仍有小數怎麼辦呢?

Ex6. 將下列各式化為最簡根式:

(1) √0.2 (2) √3.2 解題思維:

我們只要將小數化成分數,就可以繼續算下去了!

解:(1) √0.2 = √2

10 = √2×√10

√10×√10 = √20

10

=√5

= 5

= √16

5 = √16

√5 = 4×√5

√5×√5 = 4√5 (2) √3.2 = 5

注意!√20 可以繼續化簡,

√20 = √22× 5 = 2√5。

(17)

15

重點提問

1. 從上面的課文中,大致上有三類的根式仍然還不是最簡根式,請 問是哪三類?

2. √108 是不是最簡根式?為什麼?

如果不是的話,請用上面課文中化簡的技巧將它化為最簡根式。

3. √7

12 是不是最簡根式?為什麼?

如果不是的話,請用上面課文中化簡的技巧將它化為最簡根式。

(18)

16

4. 3

√11 是不是最簡根式?為什麼?

如果不是的話,請用上面課文中化簡的技巧將它化為最簡根式。

B.隨堂練習

1.將下列各式化為最簡根式:

(1) √108 (2) √128 (3) √450

2. 將下列各式化為最簡根式:

(1) √23× 32× 52 (2) √26× 53 (3) √33× 77

(19)

17

3.計算下列各式,並將結果化為最簡根式:

(1) √10 × √20 × √8 (2) √18 × √12 × √44

4. 將 √8

√27 化為最簡根式。

5. 將下列各式化為最簡根式:

(1) √6

7 (2) √9

50 (3) √0.9 (4) √5.6

還是不太懂,

請看下面影片(1)

https://www.youtube.com/

watch?v=Pd9e865QaNw

還是不太懂,

請看下面影片(2)

https://www.youtube.com/

watch?v=RCWjcpGJCog

還是不太懂,

請看下面影片(3)

https://www.youtube.com/

watch?v=ANEKsnygRuU

(20)

18

單元二:根式的運算

課文 C:根式的加減

我們接下來要說的就是根式的加減。

先回憶一下,二元一次式的化簡。

今天如果要化簡 5𝑥 + 3𝑦 + 2𝑥 − 5𝑦 這個二元一次式的話,

因為同類項才可以合併,所以可以先將同類項標記出來:

然後知道含有 𝑥 項的是 5𝑥 和+2𝑥 合併化簡得到 7𝑥,

含有 𝑦 項的是+3𝑦 和 −5y 合併化簡得到−2𝑦。

所以 5𝑥 + 3𝑦 + 2𝑥 − 5𝑦 = 7𝑥 − 2𝑦。

而根式的加減也有類似的規則,

那就是「同類方根能進行合併,非同類方根不能合併」。

什麼是同類方根呢?

𝑎, 𝑏 均為正數,若將 √𝑎 與 √𝑏 化為最簡根式後,根號內的數相同,

我們就稱為它們為同類方根。

舉個例子,√12 與 √27。

先化簡成最簡根式:√12 = √4 × 3 = 2√3,√27 = √9 × 3 = 3√3。

(21)

19

像這樣子,√12 的最簡根式 2√3 與 √27 的最簡根式 3√3 的根號部分 都是 √3 ,我們就稱 √12 與 √27 是同類方根。

同類方根在根式的加減非常好用,因為我們只要把同類方根進行合併 就好,不是同類方根就沒辦法合併。

我們來看個例題。

Ex1.計算下列各式,並將結果化為最簡根式。

(1) 5√3 + 2√3 (2) 7√2 − √2 (3) √5 + 5√5 解題思維:

5√3 + 2√3 所代表的是 5 個 √3 加上 2 個 √3 ,那加完之後就是 有 (5 + 2) 個 √3 ,也就是 (5 + 2)√3 = 7√3。

7√2 − √2 所代表的是 7 個 √2 扣掉 1 個 √2 ,那扣完之後就是有 (7 − 1) 個 √2 ,也就是 (7 − 1)√2 = 6√2。

解:

(1) 5√3 + 2√3 = (5 + 2)√3 =

7√3

(2) 7√2 − √2 = (7 − 1)√2 =

6√2

(3) √5 + 5√5 = (1 + 5)√5 =

6√5

Ex2.計算下列各式,並將結果化為最簡根式。

(22)

20

(1) 5√3 − 2√2 + √3 + 3√2 (2) 2√11 + 2√6 + 2 − 3√11 + √6 解:

(1)

5√3 − 2√2 + √3 + 3√2

=

6√3 + √2

說明:

這題有不同類型的同類方根。

一類是與 √3 有關的同類方根。有兩個,分別是 5√3 和 +√3,

兩個合併化簡後會得到 6√3 。

另一類是與 √2 有關的同類方根。也有兩個,分別是 −2√2 和 +3√2,兩個合併化簡後會得到 +√2。

所以 5√3 − 2√2 + √3 + 3√2 合併化簡出來的結果是 6√3 + √2。

(23)

21

(2)

2√11 + 2√6 + 2 − 3√11 + √6

=

−√11 + 3√6 + 2

說明:

我們要先分組: 2√11 + 2√6 + 2 − 3√11 + √6

與 √11 有關的同類方根有兩個,分別是 2√11 和 −3√11,兩個 合併化簡後會得到 −√11。

與 √6 有關的同類方根也有兩個,分別是 +2√6 和 +√6 ,兩個合 併化簡後會得到 +3√6。

另外有一個+2 ,沒有跟它同類的。

所以 2√11 + 2√6 + 2 − 3√11 + √6 合併化簡出來的結果是

−√11 + 3√6 + 2。

省思:

當我們遇到有多組不同類型的同類方根要進行加減時,我們必須 先將同類方根分為同一組,再把同組的同類方根進行合併。

(24)

22

Ex3.計算下列各式,並將結果化為最簡根式。

(1) √63 − √75 (2) √48 + 5√12 解題思維:

在遇到還沒化為最簡根式的根式加減計算時,會比較難以看出同 類方根,所以我們會先把各個根號化成最簡根式,再利用「同類 方根進行合併,非同類方根不能合併」去合併化簡。

解:

(1) √63 − √75 =

3√7 − 5√3

說明:

√63 與 √75 不是最簡根式,換成最簡根式:√63 = √9 × 7 = 3√7、

√75 = √25 × 3 = 5√3,化簡後發現這兩個根式不是同類方根,

所以不能合併,所以 √63 − √75 = 3√7 − 5√3 就已經是化到最 簡了!

(2) √48 + 5√12 = 4√3 + 5√22× 3 = 4√3 + 10√3 =

14√3

說明:

√48 與 5√12 不是最簡根式,先換成最簡根式:

√48 = √16 × 3 = 4√3;5√12 = 5√4 × 3 = 5 × 2 × √3 = 10√3,

發現這兩個都是與 √3 有關的同類方根,所以合併後就是 10√3。

Ex4.計算下列各式,並將結果化為最簡根式。

(25)

23

(1) √63 − 3√28 + √175 (2) √20 + √80 + √125 + √180 解:

(1) √63 − 3√28 + √175 = 3√7 − 6√7 + 5√7 =

2√7

說明:

√63 、 3√28 與 √175 都不是最簡根式,先換成最簡根式:

√63 = √9 × 7 = 3√7、3√28 = 3√4 × 7 = 3 × 2 × √7 = 6√7、

√175 = √25 × 7 = 5√7,

發現這三個都是 √7 有關的同類方根,

√63 − 3√28 + √175 = 3√7 − 6√7 + 5√7 = (3 − 6 + 5)√7 所以合併後就是 2√7。

(2) √20 + √80 + √125 + √180 = 2√5 + 4√5 + 5√5 + 6√5 =

17√5

說明:

√20 、 √80 、 √125 與√180 都不是最簡根式,先換成最簡根式:

√20 = √4 × 5 = 2√5、√80 = √16 × 5 = 4√5、

√125 = √25 × 5 = 5√5、√180 = √36 × 5 = 6√5,

發現這三個都是 √5 有關的同類方根,

√20 + √80 + √125 + √180 = 2√5 + 4√5 + 5√5 + 6√5

= (2 + 4 + 5 + 6)√5 = 17√5 所以合併後就是 17√5。

(26)

24

Ex5.計算下列各式,並將結果化為最簡根式。

(1) 1

√2+√2

2 (2) √5

4− √4

5 解:

(1) 1

√2+√2

2 = 1×√2

√2×√2+√2

2 =√2

2 +√2

2 =

√2

說明:

1

√2 分母有根號,所以不是最簡根式,先換成最簡根式:

1

√2 分子分母同乘√2,1

√2=√2

2。 而 √22 其實等於 1

2√2 ,也就是所謂的 12 個 √2。

發現這兩個都是與 √2 有關的同類方根,1

2 個 √2 加上 12 個 √2 就 是有 1 個√2,所以合併化簡後就是 √2。

(2) √5

4− √4

5 =√5

√4−√4

√5= √5

2 −2√5

5 = (1

2−2

5) √5 = 1

10

√5

說明:

5

4 與 √4

5 根號裡面有分數,所以不是最簡根式,先換成最簡根式:

5

4 其實就是分子開根號分母開根號 √5

√4 ,分母 √4 就直接是 2 , 所以 √54 = √5

2 就是最簡根式了!

4

5 其實就是分子開根號分母開根號 √4

√5 ,分子 √4 就直接是 2 , 所以 √4

5 = 2

√5 ,分母還有根式,所以不是最簡根式,還要再化簡。

分子分母同乘 √5 ,所以 2×√5

√5×√5 = 2√5

5 結果就是最簡根式了。

(27)

25

√52 等於 1

2√5 ,也就是所謂的 12 個 √5;2√55 等於 25√5 ,也就是 所謂的 2

5 個 √5。

發現這兩個都是與 √5 有關的同類方根,1

2 個 √5 減掉 25 個 √5 就 是有 (1

2−2

5) 個√5,(1

2−2

5) 同時通分母後 (5

10− 4

10) = 1

10 。所以 合併後就是 1

10√5。

(28)

26

重點提問

1.請用自己的話解釋什麼是「同類方根」?

2. 連連看,將同類方根連在一起。

√2 √24 √5

2 3√7 √2

√12

3

√3 √5 2√6 2√2 1

7√7 3. 請問根式的加法怎麼運算?

請用這個運算規則計算 2√5 + 5√2 − √5 − 3√2 。

4. 「4√8 + √3 − √2 + 2√3 − √5」

(29)

27

(1)上面根式當中,請問有幾類同類方根?

(2)計算上面根式,並將結果化為最簡根式。

C.隨堂練習

1.計算下列各式,並將結果化為最簡根式。

(1) 3√3 + 2√3 (2) 6√6 − √6 (3) √7 + 3√7

(30)

28

2.計算下列各式,並將結果化為最簡根式。

(1) 6√2 + 4√3 + √2 − 2√3 (2) 6√13 + 3√7 − 5 − 6√7 − √13

3.計算下列各式,並將結果化為最簡根式。

(1) √27 − √24 (2) 2√75 + √108

4.計算下列各式,並將結果化為最簡根式。

(1) √363 − 2√27 + 4√48 (2) √5 + √45 + √125 + √245

5.計算下列各式,並將結果化為最簡根式。

(31)

29

(1) 2

√3+√3

2 (2) √8

9− √9

8

還是不太懂,

請看下面影片

https://www.youtube.com/

watch?v=IOkWt2x8WhU

(32)

30

單元二:根式的運算

課文 D:根式的四則運算

接下來我們要來看根式的四則運算,既然是四則運算,當然有加減跟 乘除還有括號都存在。

我們先來看一下分配律的題目!

Ex1.計算 √3(√15 + √21),並化為最簡根式。

解:

√3(√15 + √21) = √3 × √15 + √3 × √21 =

3√5 + 3√7

說明:

這其實是分配律,括號中的 √15 跟 √21 其實共同擁有外面的 √3,

我們將 √3 乘進去 √3(√15 + √21) =

√3 × √15

+

√3 × √21

我們可以用「集滿兩個換出去」,15 拆成 3 × 5、21 拆成 3 × 7

√3 × √15 + √3 × √21

所以 √3 × √15 = 3√5、√3 × √21 = 3√7,

答案就是 3√5 + 3√7。

3 × 5 3 × 7

(33)

31

Ex2.計算 (3√5 − 2)(4√5 + 3),並化為最簡根式。

解:

(3√5 − 2)(4√5 + 3) =

3√5 × 4√5 + 3√5 × 3 − 2 × 4√5 − 2 × 3

=

60 + 9√5 − 8√5 − 6

=

54 + √5

說明:

這是兩個根式乘以兩個根式,就是利用分配律分別相乘,

(3√5 − 2)(4√5 + 3)

第一個箭頭: 3√5 × 4√5,外面乘外面3 × 4 = 12、裡面乘裡面

√5 × √5 = 5,所以第一個就是12 × 5 =

60。

第二個箭頭: 3√5 × 3 = 9√5

第三個箭頭: −2 × 4√5 = −8√5

第四個箭頭:−2 × 3 = −6。

所以就是 60

+ 9√5 − 8√5 − 6 ,

同類方根可以合併,60 − 6 = 54、9√5 − 8√5 = √5,

因此 54 + √5 就是答案。

1

2

3 4

1

2

3

4

(34)

32

接下來我們來看一下跟乘法公式有關的題目!

Ex3.計算下列各式,並化為最簡根式。

(1) (3 − 2√7)2 (2) (2√5 + 3√2)2 (3) (√5 + 1)(√5 − 1)

解:

(1)

(3 − 2√7)2 = 32− 2 × 3 × 2√7 + (2√7)2

= 9 − 12√7 + 28 =

37 − 12√7

說明:

這一小題其實就是利用差的平方公式:(𝑎 − 𝑏)2 = 𝑎2− 2𝑎𝑏 + 𝑏2 把 (3 − 2√7)2 括號內的 3 當成 𝑎,2√7 當成 b 。

所以 (3 − 2√7)2 = 32− 2 × 3 × 2√7 + (2√7)2

( 𝑎 − 𝑏 )2 = 𝑎2− 2𝑎𝑏 + 𝑏2

= 9 − 12√7 + 28 = 37 − 12√7

(2)

2 × 3 × 2√7 (2√7)2 = 2√7 × 2√7 = 4 × 7

(35)

33

(2√5 + 3√2)2 = (2√5)2+ 2 × 2√5 × 3√2 + (3√2)2

= 20 + 12√10 + 18 =

38 + 12√10

說明:

這一小題其實就是利用和的平方公式:(𝑎 + 𝑏)2 = 𝑎2+ 2𝑎𝑏 + 𝑏2 把 (2√5 + 3√2)2 括號內的 2√5 當成 𝑎,3√2 當成 b 。

所以 (2√5 + 3√2)2 = (2√5)2+ 2 × 2√5 × 3√2 + (3√2)2

( 𝑎 + 𝑏 )2 = 𝑎2 + 2𝑎𝑏 + 𝑏2

= 20 + 12√10 + 18 = 38 + 12√10

(3)

(√5 + 1)(√5 − 1) = √52− 12 = 5 − 1 =

4

說明:

這一小題其實就是利用平方差公式:(𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏2 √5 當成 𝑎,1 當成 b 。

所以 (√5 + 1)(√5 − 1) = √52− 12

( 𝑎 + 𝑏 )( 𝑎 − 𝑏 ) = 𝑎2 − 𝑏2

= 5 − 1 = 4

看完一些根式的四則運算後,我們來看個奇怪分數: 2

√5:1。 請問一下這個奇怪的分數: 2

√5:1 是不是一個最簡根式?

(2√5)2 = 2√5 × 2√5 = 4 × 5

2 × 2√5 × 3√2 (3√2)2 = 3√2 × 3√2

= 9 × 2

(36)

34

當然不是啊!看它的分母:√5 + 1 ,含有根式,而且實際上它還可 以繼續化簡,化簡到分母不含有根式。

文本 B 當中有提到,當分母為一個 √𝑎 時,再乘一個 √𝑎 就會使得

「√𝑎 × √𝑎 = 𝑎」,分母的根式就會消除。

如果我們 2

√5:1 分子分母同乘以 √5 ,會發現 (√5 + 1) × √5 = 5 + √5,

分母一樣會有根式。

那該怎麼辦呢?

我們就利用平方差公式:(𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏2 來解決這個問題。

分母是 (√5 + 1) ,就把它當成是 (𝑎 + 𝑏) ,那還需要乘以一個 (𝑎 − 𝑏) 來湊成平方差公式,也就是還需要乘以 (√5 − 1)。

(√5 + 1)(√5 − 1) = (√5)2− 12 = 5 − 1 = 4 ,這樣分母就成功消除 根式了。

分母乘以 (√5 − 1),要維持分數的相等,當然分子也要乘以(√5 − 1)。

=(√5;1)

2 , (√5;1)

2 就是 2

√5:1 的最 所以 2

√5:1 = 2(√5;1)

(√5:1)(√5;1) = 簡根式。

我們來看一題練習題。

Ex4.將下列根式化為最簡根式 (1) 7

√13;√6 (2) 2

√21:5

(37)

35

解:

(1) 7

√13;√6= 7(√13:√6)

(√13;√6)(√13:√6) = 7(√13:√6)

√132;√62 = 7 ( 13 6)

7

=

√13 + √6

說明:

分母是 (√13 − √6) ,要利用平方差公式將分母有理化,所以將 它分子分母同乘以 (√13 + √6)。

分母 (√13 − √6) × (√13 + √6) = √132− √62 = 13 − 6 = 7;

分子就是 7 × (√13 + √6)。

發現分子分母可以同時約掉 7 , 7 ( 13 6)

7

= √13 + √6 。

=5;√21

2

(2) 2

5:√21 = 2(5;√21)

(5:√21)(5;√21) =2(5;√21)

52;√212 = 說明:

分母是 (5 + √21) ,要利用平方差公式將分母有理化,所以將它 分子分母同乘以 (5 − √21)。

分母 (5 + √21) × (5 − √21) = 52 − √212 = 25 − 21 = 4;

分子就是 2 × (5 − √21)。

=5;√21

2 。

發現分子分母可以同時約 2,

(38)

36

重點提問

1. 請問如何化簡一個分母為 √𝑎 − √𝑏 的根式呢?

請利用這個方法將 1

√7;√6 化為最簡根式。

D.隨堂練習

1.計算 √10(√15 + √6),並化為最簡根式。

2.計算 (2√7 + 3)(√7 − 4),並化為最簡根式。

3.計算下列各式,並化為最簡根式。

(1) (5 + 3√2)2 (2) (5√2 − 2√3)2 (3) (4 + 3√7)(4 − 3√7)

(39)

37

4.將下列根式化為最簡根式 (1) 11

√15;√4 (2) 9

√18:6

還是不太懂,

請看下面影片(1)

https://www.youtube.com/

watch?v=iomMCSYednY

還是不太懂,

請看下面影片(2)

https://www.youtube.com/

watch?v=GFQ9STVpq4E

還是不太懂,

請看下面影片(3)

https://www.youtube.com/

watch?v=Pd9e865QaNw#t=

03m23s

還是不太懂,

請看下面影片(4)

https://www.youtube.com/

watch?v=ANEKsnygRuU#t=0 4m57s

(40)

38

單元三:畢式定理

課文 A:畢式定理

我們國小學過,一個三角形當中如果有一個角是直角,那麼我們就稱 那個三角形是直角三角形。這單元當中,直角三角形很重要!

如右圖,在直角三角形當中,

直角的兩個旁邊,我們都稱為「股」;

不是直角的旁邊,是直角的對面,我們稱它為「斜邊」。

而在中國著名的古代數學著作《九章算術》中,直角兩旁較短的邊為

「勾」、較長的邊為「股」;直角的對面,稱為「弦」。

那這兩股與斜邊之間有什麼關係呢?

我們從下面的圖來試著觀察看看!

在圖中,有 4 個直角三角形跟 1 個正方形甲,合成一個大正方形。

而且這 4 個三角形其實都是一樣的。

斜邊

(41)

39

所以 正方形甲的面積 = 大正方形 − 四個直角三角形面積

− 四個

=

𝑐2 = (𝑎 + 𝑏)2 − 4 ×𝑎𝑏

2

= 𝑎2+ 2𝑎𝑏 + 𝑏2 − 2𝑎𝑏

= 𝑎2+ 𝑏2

從上面的說明,我們就可以知道:𝑐2 = 𝑎2+ 𝑏2, 而 𝑎, 𝑏, 𝑐 其實就是直角三角形的三邊長,

𝑐 就是這個直角三角形的斜邊,𝑎, 𝑏 就是這個直角三角形的兩股,

所以 𝑐2 = 𝑎2 + 𝑏2 代表的就是

「直角三角形中,斜邊平方等於兩股平方和」,

這種關係我們就稱作畢氏定理或勾股定理。

我們來練習一下題目!

Ex1.已知下列各直角三角形的兩股長,求斜邊長。

(1) (2) 解:

(42)

40

(1) 假設斜邊為 𝑥 ,根據畢氏定理「斜邊平方等於兩股平方和」,

𝑥2 = 52 + 122 = 25 + 144 = 169 𝑥 = ±√169 = ±13

因為斜邊長 > 0,所以斜邊長= 13。

(2) 假設斜邊為 𝑦 ,根據畢氏定理「斜邊平方等於兩股平方和」,

𝑦2 = 72+ 242 = 49 + 576 = 625 𝑦 = ±√625 = ±25

因為斜邊長 > 0,所以斜邊長= 25。

上面這題是我們知道兩股長,利用畢氏定理求斜邊長。

接下來我們知道斜邊及其中一股長,要利用畢氏定理求另一股長。

Ex2.已知下列各直角三角形的斜邊及一股長,求另一股長度為何?

(1) (2)

解:

(1)設要求的股長為 𝑥 ,根據畢氏定理「斜邊平方等於兩股平方和」,

𝑥2+ 32 = 52⇒ 𝑥2+ 9 = 25 ⇒ 𝑥2 = 25 − 9 = 16 𝑥 = ±√16 = ±4 ,股長必為正的,所以另一股為 4 。

(2) 設要求的股長為 𝑦 ,根據畢氏定理「斜邊平方等於兩股平方和」,

(43)

41

𝑦2+ 82 = 172⇒ 𝑦2+ 64 = 289 ⇒ 𝑦2 = 289 − 64 = 225 𝑥 = ±√225 = ±15 ,股長必為正的,所以另一股為 15 。

Ex3.求出下列各矩形的對角線長。

(1) (2)

解題思維:

我們如果有直角三角形,就可以利用畢式定理了,

所以我們要想辦法做出直角三角形。

因為矩形四個是直角,所以將對角線畫起來,

連起來後就有直角三角形了!

這個直角三角形裡,

剛好矩形的長跟寬就是直角三角形的兩股,

對角線就是直角三角形的斜邊。

接下來就可以利用畢式定理「斜邊平方等於兩股平方和」,求出 矩形的對角線長了!

對角線

(44)

42

解:

(1) 將對角線令為 𝑥 ,

根據畢氏定理可以列式:𝑥2 = 82+ 132 𝑥2 = 82+ 132 = 64 + 169 = 233,

𝑥 = ±√233 (因為對角線長是長度,所以負不合) 所以對角線長= √233。

(2) 將對角線令為 𝑦 ,

根據畢氏定理可以列式:𝑦2 = 62 + 42 𝑦2 = 62 + 42 = 36 + 16 = 52,

𝑦 = ±√52 = ±√4 × 13 = ±2√13(對角線長是長度,故負不合) 所以對角線長= 2√13。

好,再來我們看一些畢氏定理的應用!

Ex4.如圖直角三角形邊長為 5、12、13,

求斜邊上的高。

解題思維:

我們先看一下要求的東西,斜邊上的高是哪一個咧?

這是直角三角形,直角在 ∠C,

所以斜邊在 13 這段(也就是𝐴𝐵̅̅̅̅),

所以斜邊上的高指的就是 𝐶𝐷̅̅̅̅ 。

13

8 𝑥

4 6

y

(45)

43

那這要怎麼求呢?

我們來想,一個三角形的面積有幾種算法。

先隨便畫一個三角形,讓這個三角形的三邊長為 𝑎、𝑏、𝑐。

我們可以先用 𝑎 當底,三角形的面積是 底×高

2 ,

高就是藍色這段,先叫做 ℎ𝑎 ,代表這是以 𝑎 為底的高,

所以面積的第一種算法為 𝑎×ℎ2 𝑎

第二種算法我們以 𝑏 當底,這樣的高就是橘色這段,

我們叫做 ℎ𝑏,所以面積的第二種算法為 𝑏×ℎ2𝑏

那我可不可以以 𝑐 當底?當然也可以,它的高是誰?

就是下圖綠色的那段,我們叫做 ℎ𝑐

因為它是以 𝑐 為底的高,這樣面積就是 𝑐×ℎ2 𝑐

這樣三角形的面積就有三種算法啦!但是我們算的是同一個三角形,

因此不管我用哪種算法,算出來的面積都要一樣!

𝑎 × ℎ

𝑎

2

=

𝑏 × ℎ

𝑏

2

=

𝑐 × ℎ

𝑐

2

接著我們就可以用這個方式找出斜邊上的高。

在這個直角三角形裡面,它的面積算法有兩種:

(46)

44

第一種,我可以用 𝐴𝐶̅̅̅̅當底,因為 ∠C 是直角,所以 𝐵𝐶̅̅̅̅̅ 就是他的高,

這樣第一個三角形面積算法就是 𝐴𝐶̅̅̅̅×𝐵𝐶2̅̅̅̅

第二種,我也可以用斜邊 𝐴𝐵 ̅̅̅̅̅ 當底,這時候的高就是 𝐶𝐷̅̅̅̅ ,而面積就 是 𝐴𝐵̅̅̅̅×𝐶𝐷̅̅̅̅

2 。

那這兩個算的是同一個三角形的面積,所以會一樣。

然後就可以解出斜邊上的高 𝐶𝐷̅̅̅̅ 了!

解:

從圖中我們可以知道三角形面積= 5×122 設斜邊上的高為 𝐶𝐷̅̅̅̅ ,則三角形面積=13×𝐶𝐷̅̅̅̅

2 ,

5 × 12

2

=

13 × 𝐶𝐷 ̅̅̅̅

2

兩邊都有 2 ,所以把 2 約掉,

5 × 12

2

=

13 × 𝐶𝐷 ̅̅̅̅

2

要求 𝐶𝐷̅̅̅̅ ,所以把 13 移過去,

𝐶𝐷̅̅̅̅ = 5 × 12

13 =

60

13

(47)

45

省思:

當然你可以把這個公式化,

如果有一個直角三角形,兩股分別為 𝑎、𝑏,斜邊為 𝑐。

那斜邊上的高 ℎ 就會等於 𝑎×𝑏𝑐 。 為什麼?因為 𝑎×𝑏2 = 𝑐×ℎ

2,所以 ℎ = 𝑎×𝑏𝑐 ,也就是兩股乘起來除以斜邊。

Ex5.

如圖,放著一把 5 公尺的長梯於牆上,

梯腳離牆角 1.4 公尺,求:

(1)梯頂離地面多少公尺?

(2)若欲將梯頂降低 80 公分,則梯腳須向後移動多少公分?

解:

(1)

首先,我們先看紅色這把梯子。

梯腳離牆角 1.4 公尺,梯子長 5 公尺,

要求梯頂距離地面的高度,也就是下圖中棕色這段的長度,

這裡就形成一個直角三角形。

(48)

46

這個紅色直角三角形,斜邊是 5,其中一股長 1.4,

就可以假設要求的為 ℎ。

2 = 52− 1.42 = 25 − 1.96 = 23.04 ℎ = ±√23.04。那 23.04 怎麼開根號呢?

先把 23.04 化成分數,再來上面開上面,下面開下面:

√23.04 = √2304

100 =√2304 10 接著 2304 利用短除法算一下:

2304 = 42× 122 4 2304

4 576 12 144 12

知道 2304 開出來是 48,因為有兩個 4,和兩個 12。

所以

√23.04 = √2304

100 = √2304 10 =48

10 = 4.8 因此 ℎ = ±4.8,那因為是高度,所以負不合。

所以梯頂離地面 4.8 公尺。

(2)

如果要將梯頂降低 80 公分,也就是 0.8 公尺。

原本高度 4.8 公尺,降低了 0.8 公尺,變成 4 公尺。

再想想看樓梯的長度會不會隨著它降低而改變?

(49)

47

看圖,樓梯掉落(藍色變紅色)長度依然不變,還是維持 5 。 所以這裡形成新的直角三角形。

看綠色直角三角形,斜邊 5,一股長為 4,就可以假設所求為 𝑎 。 𝑎2 = 52− 42 = 25 − 16 = 9

𝑎 = ±√9 = ±3(負不合)

但題目是問梯腳後移多少?

原本梯腳離牆角為 1.4,但後來的梯腳離牆角為 3,所以要後移多少?

當然就是 3 − 1.4 = 1.6,所以後移 1.6 公尺。

5

𝑎 𝑎

4

(50)

48

重點提問

1. 請問什麼是「畢氏定理」?

請根據上面的課文用自己的話解釋這個定理。

2. 根據上面的課文,一個直角三角形斜邊上的高如何計算?

請利用這個方法計算直角三角形邊長為 7、24、25 斜邊上的高。

A.隨堂練習

1.已知下列各直角三角形的兩股長,求斜邊長。

(1) (2)

(51)

49

2.已知下列各直角三角形的斜邊及一股長,求另一股長度為何?

(1) (2)

3.求出下列各矩形的對角線長。

(1) (2)

4.如圖直角三角形邊長為 3、4、5,求斜邊上的高。

(52)

50

5.平安拿一鋁梯在離牆 6 公尺處斜放在牆邊,

此時梯頂剛好離地面 6 公尺(如圖所示),求:

(1)鋁梯有多長?

(2)今移動此鋁梯使它在離牆 2 公尺處斜放,則 梯頂離地面多少公尺?

還是不太懂,

請看下面影片(1)

https://www.youtube.com/

watch?v=yADZ1P2n8zQ

還是不太懂,

請看下面影片(2)

https://www.youtube.com/

watch?v=IVoKpc5I_t0

還是不太懂,

請看下面影片(3)

https://www.youtube.com/

watch?v=H860kIDaw0E

還是不太懂,

請看下面影片(4)

https://www.youtube.com/

watch?v=N6hbfGJwXTU

(53)

51

單元三:畢式定理

課文 B:平面上兩點間的距離

接下來我們來看平面上兩點間的距離。

首先,先來看兩點在同一水平上。

兩點在同一水平上會發生什麼事情呢?

舉個例子,如右圖,有兩點 A(1,2)、B(4,2),

這兩點是水平的,而它們之間的距離就是藍色的那段,

那要怎麼算呢?數一下,會發現距離就是 3 。

但當數字很大的時候就很難用數的就可以數的出來了!

所以我們分析一下,距離 3 還可以怎麼算出來?

A、B 兩點的 y 坐標都是 2 ;

而 A 的 𝑥 坐標是 1 ,B 的 𝑥 坐標是 4。

會發現在同一水平上的這兩點距離其實就是它們 𝒙 坐標的差,

所以其實就是 4 − 1 = 3。

Ex1.如右圖,坐標平面上有 P(5,2)、Q(−3,2) 兩點,

求 P、Q 兩點之間的距離 𝑃𝑄̅̅̅̅ = ?

解:P、Q 的 y 坐標都相同,P、Q 在同一水平上,

所以它們的距離會是它們 𝑥 坐標的差 5 − (−3) = 5 + 3 =

8。

(54)

52

再來我們來看一下在同一鉛垂線上的兩點間距離。

舉個例子,如右圖,有兩點 B(4,2)、C(4,6),

這兩點是鉛直的,而它們間的距離就是粉紅色的那段,

那要怎麼算呢?

我們來看一下 B、C 兩點的 𝑥 坐標都是 4 ; 而 B 的 𝑦 坐標是 2 ,C 的 𝑦 坐標是 6。

會發現在同一水平上的這兩點距離其實就是它們 𝒚 坐標的差,

所以其實就是 6 − 2 = 4。

Ex2.如圖,坐標平面上有 P(1,2)、Q(1, −3) 兩點,

求 P、Q 兩點之間的距離 𝑃𝑄̅̅̅̅ = ?

解:P、Q 的 𝑥 坐標都相同,P、Q 在同一鉛直上,

所以它們的距離會是它們 𝑦 坐標的差 2 − (−3) = 2 + 3 =

5。

最後一種就是不在同一水平也不是在同一鉛垂線上的兩點距離。

舉個例子,如右圖,有兩點 A(1,2)、C(4,6),

A、C 兩點的 𝑥 坐標不相同,而且 𝑦 坐標不相同,

所以不在同一水平上也不在同一鉛垂線上。

那該怎麼求出它們的距離呢?

(55)

53

這時候就要利用到畢氏定理了!

畢氏定理是指直角三角形的三邊關係:「斜邊平方等於兩股平方和」,

所以必需要製造一個直角三角形,怎麼製造呢?

我們畫一條通過 A 的水平線、一條通過 C 的鉛直線,

兩條線會交一點,我們先稱它為 B 。

B 與 A 在同一水平上,所以 𝑦 坐標與 A 的 y 坐標一樣是 2 ; B 與 C 在同一鉛垂線上,所以 𝑥 坐標與 C 的 𝑥 坐標一樣是 4 。 因此 B 點坐標就是 (4,2) 。

這樣我們就有一個直角三角形 ABC 了,

𝐴𝐵̅̅̅̅、𝐵𝐶̅̅̅̅ 是這個直角三角形的兩股,A、C兩點間距離 𝐴𝐶̅̅̅̅ 則是斜邊。

B 與 A 在同一水平上,𝐴𝐵̅̅̅̅,就是 𝒙 坐標的差: 4 − 1 = 3;

B 與 C 在同一鉛垂上,𝐵𝐶̅̅̅̅,就是 𝐲 坐標的差: 6 − 2 = 4。

根據畢氏定理 𝐴𝐶̅̅̅̅2 = 𝐴𝐵̅̅̅̅2+ 𝐵𝐶̅̅̅̅2

𝐴𝐶̅̅̅̅2 = 𝐴𝐵̅̅̅̅2+ 𝐵𝐶̅̅̅̅2 = 32 + 42 = 9 + 16 = 25,

因為 𝐴𝐶̅̅̅̅ 是距離,所以為正,因此 𝐴𝐶̅̅̅̅ = 5。

每次都要這麼麻煩嗎?其實可以不用那麼麻煩。

我們看一下式子 𝐴𝐶̅̅̅̅2 = 𝐴𝐵̅̅̅̅2+ 𝐵𝐶̅̅̅̅2

𝐴𝐵̅̅̅̅2 其實就是 (4 − 1)2。括號中的 4 是 B 點的 𝑥 坐標,也是 C 點的 𝑥 坐標;括號中的 1 是 A 點的 𝑥 坐標。

A B

C

(56)

54

𝐵𝐶̅̅̅̅2 其實就是 (6 − 2)2。括號中的 6 是 C 點的 𝑦 坐標;括號中的 2 是 B 點的 𝑦 坐標,也是 A 點的 𝑦 坐標。

所以 𝐴𝐶̅̅̅̅2 = 𝐴𝐵̅̅̅̅2 + 𝐵𝐶̅̅̅̅2

= (𝐵的𝑥坐標 − 𝐴的𝑥坐標)2+ (𝐶的𝑦坐標 − 𝐵的𝑦坐標)2

= (𝐶的𝑥坐標 − 𝐴的𝑥坐標)2+ (𝐶的𝑦坐標 − 𝐴的𝑦坐標)2 所以我們可以得到一個結論,

平面任意兩點的距離= √(𝑥坐標差)2+ (𝑦坐標差)2

即兩點 A(𝑥1, 𝑦1)、B(𝑥2, 𝑦2) 的距離為 𝐴𝐵̅̅̅̅ = √(𝑥1− 𝑥2)2+ (𝑦1 − 𝑦2)2

我們舉一個例子。

Ex3.如圖,坐標平面上有 P(−2,5)、Q(4, −3) 兩點,

求 P、Q 兩點之間的距離 𝑃𝑄̅̅̅̅ = ? 解:

P、Q 的 𝑥 坐標、𝑦 坐標都不相同,它們是斜的,

所以可以利用兩點間的距離公式: √(𝑥坐標差)2+ (𝑦坐標差)2 𝑃𝑄̅̅̅̅ = √(−2 − 4)2+ [5 − (−3)]2

= √(−6)2+ 82

= √36 + 64

= √100 =

10。

(57)

55

重點提問

1. 請問如何計算兩點的距離?

請利用這個方法計算 (4, −2)、(7,1) 兩點間的距離。

(58)

56

B.隨堂練習

1.已知坐標平面上有 A(5,2)、 B(5,6) 兩點,求 𝐴𝐵̅̅̅̅ 的長。

2.已知坐標平面上有 A(3, −4)、 B(3,5) 兩點,求 𝐴𝐵̅̅̅̅ 的長。

3.已知坐標平面上有 A(2,2)、 B(6,6) 兩點,求 𝐴𝐵̅̅̅̅ 的長。

還是不太懂,

請看下面影片

https://www.youtube.com/

watch?v=qqEiJfBzF4g

參考文獻

相關文件

會計 (三)新增 會計學高二課程中新增的單元包括: 1..

高二部分,公司會計單元考股利計算;現金單元考現金及約當現金的計算、銀

Department of Computer and Communication Kun San University.. Tainan , Taiwan

將一條長 56cm 的綠色緞帶和一條長 42cm 的紅色緞帶剪成一樣長 的小段,且沒有剩下,則每小段緞帶最長是幾 cm?.

[r]

[r]

單元一:上學 圖畫書 單元二:泛愛 童詩 小二、小三 單元三:四季 童詩 單元四:友情 童話 小三、小四 單元五:謙遜 寓言 單元六:創意思維 童話 小四、小五

進行 18 以內的加法和減法口算 學生須透過口算解主要以圖像闡述的應用 題,並以橫式作記錄。.. 加法和減法的直式在學習單位 1N4

單元 單元一 單元二 單元三 單元四 單元五 單元六 主題

[r]

• 在線 (online):程式/演算法 必須對前一個詢問或操作做出

• 在線 (online):程式/演算法 必須對前一個詢問或操作做出

單元一 誠實掙扎 單元二 撒謊惹的禍 單元三 不問自取. 單元四 貪污零容忍 單元五 公平選舉

單元二 基督宗教 單元三 孔教*.

單元一 單元二 單元三 單元四 單元五 單元六 單元七. 中一 積極進取

求出 Select Case 運算式之值,並逐一與 Case 運算式值串列比對,若符合則執行該 Case 之後的敘述區段。1. 如果所有的

在這一節中,我們將學習如何利用 變數類 的「清 單」來存放資料(表 1-3-1),並學習應用變數的特

[r]

熊好喝飲料店推出特價活動,相同價位飲品,凡是購買 10 杯以上(含)享九折,30 杯以上(含)享八折。阿然老師打算購買每杯 30

類神經網路 ( Artificial Neural Network ),根據 DARPA Neural Network

康書嫚 (2005) 從供給面的可行性探討 DRTS 之營運模式,並根據 DRTS 服務特性與 一般公車運輸成本項目,構建

[r]

活動二則根據物體在流體內運動時,從伯努力方程式的描述,我們知道,物