• 沒有找到結果。

第五章 結論與討論

第三節 研究與教學建議

(一)未來研究方面,本研究建議後續能繼而探討:1.學生在結構式、引 導式探究教學法中的小組協作情況,藉以闡述這兩種教學法之間有哪些學生行 動、互動的特徵。2. Edelson、Tarnoff、Schwille、Bruozas 與 Switzer(2006)

提到:想提升學生的決策技能,除了要教科學的內容知識和探究實務的技能,

還要讓學生了解周全的決策是如何產生的。本研究僅分析學生自評決策歷程的 表現,所以學生在決策歷程中更完整的後設認知表現,也是值得深入分析的。

3.學生的價值觀,如何影響他做決策,因為 Aikenhead(2006)指出價值觀也許 是主宰決策的原因,但每位學生擁有的價值觀,如何影響他進行決策,仍是一 個大哉問。

(二)教學現場方面,本研究建議教師若想培養青少年學生的決策能力,

1.可依照學生本身的先備決策能力、先備自評決策的情況,搭配決策框架再選 用較為合適的探究教學法。例如在上一小節的「不同學生決策能力之較有成效 的探究教學形式」。因為,理解與分析資料對學生而言都是較為陌生的練習,甚 至對有些學生而言是一種挑戰。而且,Sadler(2011)指出在社會性科學議題 的情境中,需要學生接受議題中涵蓋著一定比例的不確定資訊。這些資訊不如 課本之中的資料那般果斷,所以研究者認為:學生可能會更需要決策框架來幫 助他們在決策歷程中來回思考。還有,2.教師也應適時地說明或引導學生進行 決策活動。例如明確地告知學生:決策的形成並不是以線性思考在進行的,做 決策必須瞻前顧後。或是提供來自於同齡學生的實際說法,像是「有很多判準 要去考量,也許我無法全盤考慮到或是有些判準沒想到,每個環節緊緊相扣,

當下所做的每個決定,都會影響到最後的選擇(A-102-08)」、「有太多東西要去 考慮,而這之中一定會有互相矛盾的點,如何在這裡面取得平衡並得出結論,

是一大難題(A-102-08)」,藉由上述他人經驗的分享,其實也是一種輔助學習 的鷹架。

參考文獻

中文參考文獻

王保進(民 104)。中文視窗版 SPSS 與行為科學研究。臺北: 心理出版社股份有限 公司。

吳心楷、宋曜廷、簡馨瑩(民 99)。錄影分析在教育研究應用。科學教育研究期刊,

55(4),1-37。

吳佳蓉(民 103)。探討在網路科學探究平台社會性科學議題決策活動中國中生決策 能力的表現。國立臺灣師範大學科學教育研究所碩士論文,未出版,臺北市。

林清山(民 103)。心理與教育統計學。臺北市:臺灣東華書局股份有限公司。

林樹聲(民 97)。科學教室中的社會性科學議題之教學。教師之友,49(4),2-6。

教育部(民 103)。十二年國民基本教育課程綱要總綱。臺北市。

陳俊榮(民 102)。國小教師將社會性科學議題融入科學教學之行動研究。國立臺中 教育大學科學應用與推廣學系暑期在職進修專班碩士論文,未出版,臺中 市。

英文參考文獻

Acar, O., Turkmen, L., & Roychoudhury, A. (2010). Student difficulties in socio‐

scientific argumentation and decision‐making research findings: Crossing the borders of two research lines. International Journal of Science Education, 32(9), 1191-1206. doi: 10.1080/09500690902991805

Aikenhead, G. (1994). What is STS in science teaching? In J. Solomon & G.

Aikenhead (Eds.), STS education: International perspectives on reform. New York, NY: Teachers College Press.

Aikenhead, G. S. (1985). Collective decision making in the social context of science. Science Education, 69(4), 453-475. doi: 10.1002/sce.3730690403

Aikenhead, G. S. (1989). Decision‐making theories as tools for interpreting student behavior during a scientific inquiry simulation. Journal of Research in Science Teaching, 26(3), 189-203. doi: 10.1002/tea.3660260302

Aikenhead, G. S. (1989). Decision‐making theories as tools for interpreting student

behavior during a scientific inquiry simulation. Journal of Research in Science Teaching, 26(3), 189-203. doi: 10.1002/tea.3660260302

Anderson, R. D. (2002). Reforming science teaching? What research says about inquiry.

Journal of Science Teacher Education, 13(1), 1-12. doi: 10.1023/A:10151711249 82

Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26-29.

Barrow, L. H. (2006). A brief history of inquiry: From Dewey to standards. Journal of Science Teacher Education, 17(3), 265-278. doi: 10.1007/s10972-006-9008-5 Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science

Teacher, 72(7), 30-33.

Böttcher, F., & Meisert, A. (2013). Effects of direct and indirect instruction on fostering decision-making competence in socioscientific issues. Research in Science Education, 43(2), 479-506. doi: 10.1007/s11165-011-9271-0

Bravo-Torija, B., & Jiménez-Aleixandre, M. P. (2012). Progression in complexity:

contextualizing sustainable marine resources management in a 10th grade classroom. Research in Science Education, 42(1), 5-23. doi:

10.1007/s11165-011-9254-1

Burek, K., & Zeidler, D. L. (2015). Seeing the forest for the trees! Conservation and activism through socioscientific issues. In M. P. Mueller, & D. J. Tippins (Eds.), EcoJustice, citizen science and youth activism (Vol. 1, pp. 425-441). Springer International Publishing.

Bybee, R.W., Harms, N., Ward, B., & Yager, R. (1980). Science, society, and science education. Science Education, 64(3), 377-395. doi: 10.1002/sce.3730640312 Cannard, K. (2005). Embracing controversy in the classroom. Science Scope, 28(8), 14.

Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42-44.

Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In N. G. Lederman, & S. K. Abell (Eds.), Handbook of research on science education. (Vol. 2, pp. 515-544). New York, NY: Routledge Press.

Creswell, J. W. (2015). Research design: Qualitative, quantitative, and mixed method approaches. Thousand Oaks, CA: Sage publications.

Dewey, J. (1910). Science as subject-matter and as method. Science, 31(787), 121-127.

Dewey, J. (1916). Method in science teaching. General Science Quarterly, 1(1), 3-9.

doi:10.1002/sce.3730010101

Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people's images of science.

London, United Kingdom: Open Unerversity Press.

Edelson, C. D., Tarnoff, A., Schwille, K., Bruozas, M., & Switzer, A. (2006). Learning to

make systematic decisions. The Science Teacher, 73(4), 40–45.

Eggert, S., & Bögeholz, S. (2010). Students' use of decision‐making strategies with regard to socioscientific issues: An application of the rasch partial credit model. Science Education, 94(2), 230-258. doi: 10.1002/sce.20358

Eggert, S., Ostermeyer, F., Hasselhorn, M., & Bögeholz, S. (2013). Socioscientific decision making in the science classroom: The effect of embedded metacognitive instructions on students' learning outcomes. Education Research International, 1-12.

Fleming, R. (1986). Adolescent reasoning in socioscientific issues part II: Nonsocial cognition. Journal of Research in Science Teaching, 23(8), 689-698.

http://dx.doi.org/10.1002/tea.3660230804

Grace, M. (2009). Developing high quality decision‐Making discussions about biological conservation in a normal classroom setting. International Journal of Science Education, 31(4), 551-570. doi: 10.1080/09500690701744595

Grace, M. M., & Ratcliffe, M. (2002). The science and values that young people draw upon to make decisions about biological conservation issues. International Journal of Science Education, 24(11), 1157-1169. doi:

10.1080/09500690210134848

Grace, M., Lee, Y. C., Asshoff, R., & Wallin, A. (2015). Student Decision-Making about a Globally Familiar Socioscientific Issue: The value of sharing and comparing views with international counterparts. International Journal of Science Education, 37(11), 1855-1874. doi: 10.1080/09500693.2015.1054000

Grünig, R., & Kühn. R. (2005). Decision-making procedures. In R. Grünig, & R. Kühn (Eds.), Successful decision-making (pp.39-60). Berlin, Germany: Springer.

Hodson, D. (1994). Seeking directions for change: The personalization and politicization of science education. Curriculum Studies, 2, 71-98. doi:

10.1080/09659759400201 04

Hodson, D. (2003). Time for action: Science education for an alternative future.

International Journal of Science Education, 25(6), 645-670. doi:

10.1080/0950069 0305021

Jho, H., Yoon, H. G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students’

debates on a nuclear power plant in Korea. Science & Education, 23(5), 1131-1151. doi: 10.1007/s11191-013-9652-z

Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded

rationality. American Psychologist, 58(9), 697-720.

Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30(1), 17.

http://dx.doi.org/10.1037/h00 57123

Kim, M., Anthony, R., & Blades, D. (2014). Decision making through dialogue: A case study of analyzing preservice teachers’ argumentation on socioscientific issues. Research in Science Education, 44(6), 903-926. doi:

10.1007/s11165-014-9407-0

Klaczynski, P. A., & Cottrell, J. M. (2004). A dual-process approach to cognitive development: The case of children’s understanding of sunk cost decisions, Thinking & Reasoning, 10(2), 147-174. doi: 10.1080/13546780442000042

Kolstø, S. D. (2000). Consensus projects: Teaching science for citizenship. International Journal of Science Education, 22(6), 645-664. doi: 10.1080/095006900289714 Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science

dimension of controversial socioscientific issues. Science Education, 85(3), 291-310. doi: 10.1002/sce.1011

Kortland, K. (1996). An STS case study about students' decision making on the waste issue. Science Education, 80(6), 673-689. doi: 10.1002/(SICI)1098-237X(199611) 80:6<673::AID-SCE3>3.0.CO;2-G

Lee, Y. C., & Grace, M. (2010). Students' reasoning processes in making decisions about an authentic, local socio-scientific issue: Bat conservation. Journal of Biological Education, 44(4), 156-165. doi: 10.1080/00219266.2010.9656216

Lee, Y. C., & Grace, M. (2012). Students' reasoning and decision making about a socioscientific issue: A cross ‐ context comparison. Science Education, 96(5), 787-807. doi: 10.1002/sce.21021

Levy Nahum, T., Ben‐Chaim, D., Azaiza, I., Herskovitz, O., & Zoller, U. (2010). Does STES‐oriented science education promote 10th‐grade students’ decision-making capability?. International Journal of Science Education,32(10), 1315-1336. doi:

10.

1080/09500690903042533

Liu, S. Y., Lin, C. S., & Tsai, C. C. (2010). College students' scientific epistemological views and thinking patterns in socioscientific decision making. Science Education, 95(3), 497-517. doi: 10.1002/sce.20422

Martin-Hansen, L. (2002). Defining inquiry: Exploring the many types of inquiry in the science classroom. The Science Teacher, 69(2), 34-37.

Martin-Hansen, L. (2010). Guest editorial: Reexamining inquiry pedagogy in the science

classroom. Electronic Journal of Science Education, 14(2), 1-4.

McComas, M., & Wood, L. (2014). Inquiry Instruction. In W. F. McComas (Ed.), The language of science education (pp. 52-54). Boston, MA: Sense Publishers.

National Research Council. (2000). Inquiry and the National Science Education Standards. Washington, DC: National Academy Press.

OECD. (2006). Assessing Scientific, Reading and Mathematical Literacy: A Framework for PISA 2006. Paris: OECD.

Papadouris, N. (2012). Optimization as a reasoning strategy for dealing with socioscientific decision‐making situations. Science Education, 96(4), 600-630.

doi:10.1002/sce.

21016

Payne, J. W., Bettmann, J. R., & Johnson, E. J. (1993). The adaptive decision maker.

Cambridge, United Kingdom: Cambridge University Press.

Pedretti, E. (1997). Septic tank crisis: A case study of science, technology and society education in an elementary school. International Journal of Science Education, 19(10), 1211-1230. doi: 10.1080/0950069970191007

Pedretti, E. (1999). Decision making and STS education: Exploring scientific knowledge and social responsibility in schools and science centers through an issues‐based approach. School Science and Mathematics, 99(4), 174-181. doi:

10.1111/j.1949-8594.1999.tb17471.x

Pokras, S. (1994). Team problem solving. Menlo Park, CA: Crisp Publications.

Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167–182.

doi: 10.1080/0950069970190203

Ratcliffe, M., & Grace, M. (2003). Science education for citizenship: teaching socio-scientific issues. Maidenhead, United Kingdom: Oxford University Press.

Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536. doi:

10.1002/tea.20009

Sadler, T. D. (2009). Situated learning in science education: Socio‐scientific issues as contexts for practice. Studies in Science Education, 45(1), 1-42. doi: 10.1080/03 057260802681839

Sadler, T. D. (Ed.). (2011). Socio-scientific issues in the classroom: Teaching, learning and research. New York, NY: Springer. doi: 10.1007/978-94-007-1159-4

Sadler, T. D., & Donelly, L. A. (2006). Socioscientific argumentation: the effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463-1488. doi: 10.1080/09500690600708717

Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112-138. doi: 10.1002/tea.20042

Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371-391. doi:

10.1007/s11165-006-9030-9

Sakschewski, M., Eggert, S., Schneider, S., & Bögeholz, S. (2014). Students’

socioscientific reasoning and decision-making on energy-related issues - development of a measurement instrument. International Journal of Science Education, 36(14), 2291-2313. doi: 10.1080/09500693.2014.920550

Shamos, M. H. (1995). The myth of scientific literacy. New Jersey, NJ: Rutgers University Press.

Siribunnam, S., Nuangchalerm, P., & Jansawang, N. (2014). Socio-scientific decision making in the science classroom. International Journal for Cross-Disciplinary Subjects in Education, 5(4), 1777-1782.

Solomon, S. (Ed.). (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). New York, NY: Cambridge University Press.

Topcu, M. S. (2010). Development of attitudes towards socioscientific issues scale for undergraduate students. Evaluation & Research in Education, 23(1), 51-67. doi:

10.1080/09500791003628187

Uskola, A., Maguregi, G., & Jiménez‐Aleixandre, M. P. (2010). The use of criteria in argumentation and the construction of environmental concepts: A university case study. International Journal of Science Education, 32(17), 2311-2333. doi:

10.1080/09500690903501736

Vygotsky, L. S. (1978). Mind in Society. Cambridge, MA: Harvard Univesity Press.

Wen-Xin Zhang, Ying-Shao Hsu, Hsin-Kai Wu, Che-Yu Kuo, Tsung-hau Jen (2015, August). The effect of metacognition on student inquiry abilities in a simulation-based assessment system. Paper session presented at the meeting of the European Science Education Research Association, Finland.

Wheeler, L., & Bell, R. (2012). Open-ended inquiry: Practical ways of implementing inquiry in the chemistry classroom. The Science Teacher, 79(6), 32.

Wu, Y. T., & Tsai, C. C. (2007). High school students’ informal reasoning on a socio‐

scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29(9), 1163-1187. doi: 10.1080/09500690601083375

Xun, G. E., & Land, S. M. (2004). A conceptual framework for scaffolding ill-structured problem-solving processes using question prompts and peer

interactions. Educational Technology Research and Development, 52(2), 5-22. doi:

10.1007/BF02504836

Yager, R.E. (1984). Defining the discipline of science education. Science Education, 68(1), 35-37. doi: 10.1002/sce.3730680107

Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis. In N. G. Lederman,

& S. K. Abell (Eds.), Handbook of research on science education. (Vol. 2, pp.697-726). New York, NY: Routledge Press.

Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49-58. doi:

10.1007/BF03173684

Zeidler, D. L., Applebaum, S. M., & Sadler, T. D. (2011). Enacting a socioscientific issues classroom: Transformative transformations. In T. D. Sadler, (Ed.), Socio- scientific issues in the classroom: Teaching, learning and research. (pp. 277-305).

New York, NY: Springer. doi: 10.1007/978-94-007-1159-4_16

Zeidler, D. L., Osborne, J., Erduran, S., Simon, S., & Monk, M. (2003). The role of argument during discourse about socioscientific issues. In Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education (pp. 97-116). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. Journal of Research in Science Teaching, 46(1), 74-101. doi: 10.1002/tea.20281

Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357-377. doi: 10.1002/sce.20048

Zhang, X., Anderson, R. C., Morris, J., Miller, B., Nguyen-Jahiel, K. T., Lin, T. J., ... Hsu, J. Y. (2015). Improving children’s competence as decision makers contrasting effects of collaborative interaction and direct instruction. American Educational Research Journal, 1-30. doi: 10.3102/0002831215618663

附錄

附錄一 決策能力試題

火力發電 vs. 風力發電

班級:_____________ 座號:_____________

任務說明

靠海的賽恩斯小鎮近 5 年來產業型態的轉變,逐漸增加的工廠造成用電量相當吃緊的困境。為了能供應民生和工業用電,該地的居 民大多同意加蓋發電廠,並提出火力發電和風力發電兩個選項。所以,接下來面對火力發電和風力發電這兩個選項,賽恩斯小鎮該 如何決定?假設你是當地的政府團隊成員,請依照現有資料,比較火力發電和風力發電,選出你認為最適合小鎮的發電型態。

資料 1:賽恩斯小鎮的介紹

這 15 年來,當地每個月的平均風速(單位:公尺/秒)。 近 5 年來,當地居民每個月的平均用電量(單位:104度)

資料 2:火力發電、風力發電的介紹

火力發電 風力發電

(1) 發電原理:燃燒化石燃料產生高溫使水變成水蒸氣,

再利用水蒸氣推動渦輪機而使發電機運作。

(2) 設廠條件:因為發電過程需要水,故沿海地帶取水較方便。

(3) 建置成本:設廠成本 170000 萬元,土地成本 5000 萬。

(4) 發電成本:天然氣 6.3(元/度)。

(5) 化學能(天然氣)轉換成電能的比例:90%(無法蓄電)

(6) 使用壽命:40 年。

(7) 其它說明:只要燃料持續提供,即可穩定發電,所以 可以因應賽恩斯小鎮用電量吃緊的現況。

雖然天然氣是對空氣汙染程度最低的化石 燃料,然而火力發電對於環境的影響,

仍有其爭議性。

(1) 發電原理:利用風力帶動風車葉片旋轉,再透過增速器 讓旋轉的速度提升進而轉動發電機。

(2) 設廠條件:風速達 3 公尺/秒以上,並且至少持續 1 小時。

(3) 建置成本:設廠成本 9000 萬元,土地成本 105000 萬。

(4) 發電成本:風 0(元/度),增速器運轉的費用 2.8(元/

度)。

(5) 風能轉換成電能的比例:0~20%(無法蓄電)

(6) 使用壽命:20 年。

(7) 其它說明:風為再生能源,只要風速的配合和增速器的 帶動,即為低成本、無汙染的發電方式。

雖然風力發電不會造成空氣汙染,但是沒有 風就沒有電。因此建置風力發電機仍需考量 賽恩斯小鎮當地的風速條件。

1 描述議題 根據現有的資料,在考量賽恩斯小鎮的發電型態之下,請問有哪些進退兩難的考量?