• 沒有找到結果。

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.2 FUTURE WORKS

The proposed analytical model of a direct ILFD is simple and useful in the direct

ILFD design. In the future, the analysis methodology which is to decompose the injection current into in-phase and quadrature terms, can be used to develop a simple analytical model for a conventional ILFD. As in the case of direct ILFD, some design guidelines can be obtained from the model to help designers to optimize the frequency locking range of a conventional ILFD.

A down-conversion third-order sub-harmonic mixer in receiving path for MMW UWB applications is proposed and analyzed. The conversion gain of the mixer is sensitive to the threshold voltage variation. A bias circuit which compensates such variation can be used to bias the mixer for a robust design. Moreover, the on-chip LO signals are usually shared between receiving and transmitting paths in an integrated transceiver. Therefore, if a third-order sub-harmonic mixer is used in the receiving path for down conversion, an up-conversion third-order sub-harmonic mixer is necessary in the transmitting path. Because the design issues of an up-conversion mixer are quite different from a down-conversion mixer, a different design methodology and circuit topology of an up-conversion third-order sub-harmonic mixer should be developed for an MMW UWB integrated transceiver.

In the implementation of the homodyne receiver for MMW UWB applications, current or gain control technique can be incorporated to improve the linearity.

Because the currents of the sub-harmonic mixers are relatively low in the receiver for higher efficiency, the linearity of the receiver is limited by the mixer. However, to handle the large signals, sufficient linearity is necessary. To improve the linearity, the currents or gains of the mixers can be adjusted. One possible gain control technique is to switch the supply voltage of the mixers to ground such that the mixer becomes a passive mixer and the linearity can be improved significantly. Therefore, the receiver

can be operated in high-gain low-linearity mode for a weak input signal, but operated in low-gain high-linearity mode for a strong signal. Such technique can be implemented in the future. Furthermore, the proposed structure is beneficial for integration. Thus, more than a VCO, a frequency synthesizer also can be integrated with the proposed homodyne receiver as shown in Fig. 6.1 in the future.

An MMW VCO using a variable inductor to achieve wide-frequency-tuning range and multi-band operations is proposed. However, the oscillating voltage amplitude of the VCO is not fixed within the frequency tuning range because of the variable quality factor of the variable inductor. Therefore, an amplitude control technique can be incorporated to maintain a fixed oscillating voltage amplitude.

Moreover, the VCO gains are not fixed in all bands. If a constant VCO gain is required, a more complex resistor network or gm-controlled circuit should replace the variable resistor in the variable inductor. Moreover, based on the proposed MMW frequency divider and VCO, which are the main blocks with the highest operating frequency in a PLL system, a frequency synthesizer can be implemented for MMW UWB applications in the future. Such frequency synthesizer can be integrated with a conventional fundamental UWB front-end system as shown in Fig. 6.2 for the applications simultaneously require low noise and high linearity (i.e. sub-harmonic technique is not suitable). The fundamental receiver and the direct ILFD can be implemented using 90-nm CMOS technology to integration with the MMW VCO proposed in Chapter 5. In this situation, 1V can be chosen as the supply voltage of the whole system in Fig. 6.2. However, if the proposed MMW VCO is implemented in 0.13μm to integrate with the sub-harmonic UWB receiver and the direct ILFD proposed in Chapter 4 and Chapter 2 as shown in Fig. 6.3, the operating frequency can be boosted even higher while the operating frequency range still can be kept wide.

In this situation, 1.2V can be chosen as the supply voltage of the whole system in Fig.

6.3. Finally, when 90-nm or more advanced technologies are used in the future, gate leakage current should be modeled and considered in the MMW circuit or system (e.g.

LNA and receiver) design.

VCO

Fig. 6.1 The sub-harmonic receiver with a frequency synthesizer.

VCO with variable inductor

Fig. 6.2 The fundamental receiver and a frequency synthesizer using the proposed direct ILFD in Chapter 2 and MMW VCO in Chapter 5.

VCO with variable inductor

Fig. 6.3 The sub-harmonic receiver and a frequency synthesizer using the proposed direct ILFD in Chapter 2 and MMW VCO in Chapter 5.

REFERENCES

[1] H. Shigematsu, T. Hirose, F. Brewe, and M. Rodwell, “CMOS circuit design for millimeter-wave applications,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., June 2004, pp. 123-126.

[2] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, ”Millimeter-wave CMOS design,” IEEE J. Solid-State Circuit, vol.40, no. 1, pp. 144-155, Jan.

2005.

[3] A. Hajimire, “mm-wave silicon ICs: challenges and opportunities,” in IEEE Custom Integrated Circuits Conference (CICC), Dig., Sep. 2007, pp. 741-747.

[4] Jun-Chau Chien, Student Member, IEEE, and Liang-Hung Lu,” Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave architecture,” IEEE J. Solid-State Circuit, vol.42, no. 9, pp. 1942-1952, Sep.

2007.

[5] A. P. van der We, S. L. J. Gierkink, R. C. Frye, V. Boccuzzi, and B. Nauta, “A robust 43-GHz VCO in CMOS for OC-768 SONET applications,” IEEE J.

Solid-State Circuit, vol.39, no. 7, pp. 1159-1163, July. 2004.

[6] J. Lee, “High-speed circuit designs for transmitters in broadband data links,”

IEEE J. Solid-State Circuit, vol.41, no. 5, pp. 1004-1016, May 2006.

[7] R. C. Liu, H. Y. Chang, C. H. Wang, H. Wang, “A 63GHz VCO using a standard 0.25μm CMOS process,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2004, pp. 446-447.

[8] L. M. Franca-Neto, R. E. Bishop, and B. A. Bloechel, “64GHz and 100GHz VCOs in 90nm CMOS using optimum pumping method,” in IEEE Int.

Solid-State Circuit Conf. Dig., Feb. 2004, pp. 444-445.

[9] C. Cao and K. K. O, “A 90-GHz voltage-controlled oscillator with a 2.2-GHz

tuning range in a 130-nm CMOS technology,” Symposium on VLSI Circuits, June 2005, pp. 242-243.

[10] P. C. Huang, M. D. Tsai, H. Wang, C. H. Chen, C. S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb.

2005, pp 404-405.

[11] C. Cao and K. K. O, “A 140-GHz fundamental mode voltage-controlled oscillator in 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 555-558, Oct. 2006.

[12] C. Cao, E. Seok and K. K. O, “192 GHz push-push VCO in 0.13μm CMOS,”

Electronic Lett., vol. 42, issue 4, pp. 208-210, Feb. 2006.

[13] P. C. Huang, R. C. Liu, H. Y. Chang, C. S. Lin, M. F. Lei, H. Wang, C. Y. Su, and C. L. Chang, “A 131 GHz push-push VCO in 90-nm CMOS technology,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., June 2005, pp.

613-616.

[14] Z. M. Tsai, C. S. Lin, C. F. Huang, J.G. J. Chern, and H. Wang, “A fundamental 90-GHz CMOS VCO using new ring-coupled quad,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 226-228, Mar. 2007.

[15] H. Wang, “A 50GHz VCO in 0.25μm CMOS,” in IEEE Int. Solid-Satate Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 372-373.

[16] M. Teibout, “A 51GHz VCO in 0.13μm CMOS,” in IEEE Int. Solid-Satate Circuits Conf. Dig. Tech. Papers, Feb. 2002, pp. 300-301.

[17] C. Cao and K. K. O, “Millimeter-wave voltage-controlled oscillators in 0.13-μm technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297–1304, Jun.

2006.

[18] D. Huang, W. Hant, N.-Y.Wang, T. W. Ku, Q. Gu, R.Wong, and M.-C. F. Chang,

“A 60 GHz CMOS VCO using on-chip resonator with embedded artificial

dielectric for size, loss and noise reduction,” in IEEE Int. Solid-Satate Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 314-315.

[19] K. Ishibashi, M. Motoyoshi, N. Kobayashi, and M. Fujishima, “76GHz CMOS voltage-controlled oscillator with 7% frequency tuning range,” in Symp. VLSI Circuit Dig. Tech. Papers, Jun. 2007, pp. 176-177.

[20] H. Knapp, H. D. Wohlmuth, M. Wurzer, and M. Rest, “25GHz static frequency divider and 25Gb/s multiplexer in 0.12μm CMOS,” in IEEE Int. Solid-Satate Circuits Conf. Dig. Tech. Papers, Feb. 2002, pp. 240-241.

[21] H. D. Wohlmuth, and D. Kehrer, “ A high sensitivity static 2:1 frequency divider up to 27GHz in 120nm CMOS,” in Proc. European Solid-State Circuit Conf., Sep. 2002, pp. 823-826.

[22] H. M. Cheema, R. Mahmoudi, M.A.T. Sanduleanu, and A. van Roermund, “A Ka band, static, MCML frequency divider, in standard 90nm-CMOS LP for 60 GHz applications,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., June 2007, pp. 541-544.

[23] C. Cao, and K. K. O, “A power efficient 26-GHz 32:1 static frequency divider in 130-nm bulk CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp.

721-723, Nov. 2005.

[24] U. Singh, and M. M. Green, “High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuit, vol. 40, no. 8, pp.

1658-1661, Aug. 2005.

[25] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J.

Solid-State Circuit, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.

[26] A. Mazzanti, P. Uggetti and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuit, vol.39, no. 9, pp. 1425-1433, Sep. 2004.

[27] H. R. Rategh, and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuit, vol.34, no. 6, pp. 813-821, June 1999.

[28] S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injection-locked frequency dividers,” IEEE J. Solid-State Circuit, vol. 38, no. 6, pp. 1015-1027, June 2003.

[29] H. Wu, and A. Hajimiri, “A 19GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb, 2001, pp. 412-413.

[30] T. Shibasaki1, H. Tamura2, K. Kanda2, H. Yamaguchi, J. Ogawa, and T. Kuroda,

“A 20-GHz injection-locked LC divider with a 25-% locking range,” Symposium on VLSI Circuits, June 2006, pp. 170-171.

[31] F. H. Huang and Y. J. Chan, “V-Band CMOS differential-type injection locked frequency dividers,” Symposium on VLSI Design, Automation and Test, Apr.

2006, pp. 1-2.

[32] S. H. Wen, J. W. Huang, C. S. Wang, and C. K. Wang, “A 60GHz wide locking range CMOS frequency divider using power-matching technique,” in IEEE Asian Solid-State Circuit Conf. Dig., Nov. 2006, pp. 187-190.

[33] Y. H. Chuang, S. H. Lee, R. H. Yen, S. L. Jang, J. F. Lee, and M. H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.

[34] P. Mayr, C. Weyers, and U. Langmann, “A 90GHz 65nm CMOS injection-locked frequency divider,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2007, pp.

198-199.

[35] M. Tiebout, ”A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuit,

vol.39, no. 7, pp 1170-1174, July 2004.

[36] K. Yamamoto and M. Fujishima, “70GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2006, pp. 600-601.

[37] K. Yamamoto. and M. Fujishima,”55GHz CMOS frequency divider with 3.2GHz locking range,” in Proc. European Solid-State Circuit Conf., Sep. 2004, pp.

135-138.

[38] S. Y. Bai, T. N. Luo, and Y. J. E. Chen, “A 1V 50 GHz digital-controlled CMOS frequency divider” in Proc. Asia-Pacific Microwave Conf., Dec. 2006, pp. 12-15.

[39] J. Lee and B. Razavi, “A 40GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuit, vol.39, no. 4, pp 594-601, Apr. 2004.

[40] B. Razavi, RF Microelectronics, NJ: Prentice Hall, 1998.

[41] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. Solid-State Circuit, vol.35, no. 1, pp 15-25, Jan. 2000.

[42] J. Lerdworatawee and W. Namgoong, “Generalized linear periodic time-caying analysis for noise reduction in an active mixer,” IEEE J. Solid-State Circuit, vol.

42, no. 6, pp 1339-1351, June 2007.

[43] J. J. Hung, T. M. Hancock, G. M. Rebeiz, “A 77 GHz sub-harmonic balanced mixer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2167–2173, Nov. 2005.

[44] C. S. Lin, P. S. Wu, H. Y. Chang, and H. Wang, “A 9–50-GHz Gilbert-cell down-conversion mixer in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-395, May 2006.

[45] F. Ellinger, “26–34 GHz CMOS mixer,” Electronic Lett., vol. 20, no. 22, pp.

1417-1419, Oct. 2004.

[46] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Bronderson, ”A 60-GHz down-converting CMOS single-gate mixer,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., Jun. 2005, pp. 163-166.

[47] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 25-27, June 2006.

[48] T. Y. Yang and H. K. Chiou, “A 16–46 GHz mixer using broadband multilayer balun in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol.

17, no. 7, pp. 534-536, July 2007.

[49] J. H. Tsai, P. S. Wu, C. S. Lin, T. W. Huang, J. G. J. Chern, and W. C. Huang, “A 25–75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,”

IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247-249, Apr. 2007.

[50] C. S. Lin, H. Y. Chang, P. S. Wu, K. Y. Lin, and H. Wang, “A 35-50 GHz IQ-demodulator in 0. 13-μm CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2007, pp. 1397-1400.

[51] F. Zhang, E. Skafidas, and W. Shieh, “A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130-nm CMOS,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., June 2007, pp. 141-144.

[52] M. Varonen, M. Kärkkäinen, and K. A. I. Halonen, “V-band balanced resistive mixer in 65-nm CMOS,” in Proc. European Solid-State Circuit Conf., Sep. 2007, pp. 11-13.

[53] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuit, vol.41, no. 10, pp. 2257–2264, Oct. 2006.

[54] T. Y. Yang and H. K. Chiou, “A 28-GHz sub-harmonic mixer using LO doubler in 0.18μm CMOS technology,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., June 2006, pp. 11–13.

[55] J. H. Tsai, and T. W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit

applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.

[56] R. M. Kodkani, and L. E. Larson, “A 24-GHz CMOS passive subharmonic mixer/downconverter for zero-IF applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1247-1256, May 2008.

[57] A. Mazzantil, M. Sosio, M. Repossil, F. Svelto, “A 24GHz sub-harmonic receiver front-end with integrated multi-phase LO generation in 65nm CMOS,”

in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2008, pp. 216-217.

[58] M. F. Huang, C. J. Kuo, and S. Y. Lee, “A 5.25-GHz CMOS folded-cascode even-harmonic mixer for low-voltage applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 660-669, Feb. 2006.

[59] H. C. Jen, S. C. Rose, R. G. Meyer, “A 2.2GHz sub-harmonic mixer for direct-conversion receivers in 0.13μm CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2006, pp. 1840-1841.

[60] B. Razavi, “A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider,” IEEE J. Solid-State Circuit, vol.43, no. 2, pp. 477–485, Feb. 2008.

[61] C. S. Wang, J. W. Huang, S. H. Wen, S. H. Yeh, and C. K. Wang, ”A CMOS RF front-end with on-chip antenna for V-band broadband wireless communications,”

in Proc. European Solid-State Circuit Conf., Sep. 2007, pp. 143-146.

[62] D. Alldred, B. Cousins, and S. P. Voinigescu, “A 1.2V, 60-GHz radio receiver with on-chip transformers and inductors in 90-nm CMOS,” in IEEE Compound Semiconductor Integrated Circuit Symp., Dig., Nov. 2006, pp. 51-54.

[63] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A highly integrated 60GHz CMOS front-end receiver,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2007, pp. 190–191.

[64] A. Parsa and B. Razavi, “A 60GHz CMOS receiver using a 30GHz LO,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2008, pp. 190–191.

[65] B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17–22, Jan. 2006.

[66] T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara, Y.

Tsutsumi, and I. Seto, “A 60-GHz CMOS receiver with frequency synthesizer,”

IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 1030–1037, Apr. 2008.

[67] C.-H. Wang, H. Y. Chang, P. S. Wu, K. Y. Lin, T. W. Huang, H. Wang, and C. H.

Chen, “A 60GHz low-power six-port transceiver for gigabit software-defined transceiver applications,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2007, pp. 192–193.

[68] B. Afshar, Y. Wang, and A. M. Niknejad, “A robust 24mW 60GHz receiver in 90nm standard CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2008, pp. 182–183.

[69] K. Scheirl, S. Bronckers, J. Borremans, P. Wambacq, and Y. Rolain, “A 52GHz phased-array receiver front-end in 90nm digital CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2008, pp. 184–185.

[70] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCO’s,”

IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905–910, June 2000.

[71] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 909–917, Apr. 2005.

[72] C. H. Kim, S. H. Shin, and H. J. Yoo, “A low phase noise and low power series coupled quadrature VCO using reconfigurable LC tank,” in IEEE Radio and Wireless Symp., Dig., Jan. 2008, pp. 395-398.

[73] A. Fard and D. Aberg, “A reconfigurable CMOS VCO with an automatic

amplitude controller for multi-band RF front-ends,” in Proc. European Circuit Theory and Design Conf., Sep. 2005, pp. 95-98.

[74] Q. D. Bui and C. S. Park, “All–PMOS wideband VCO with an automatic amplitude controller for multi–band multi–standard radios,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., June 2007, pp. 697–700.

[75] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillator, Norwell MA:

Kluwer, 1999.

[76] D. Lin, J. Kim, J. O. Plouchart, C. Cho, D. Kim R. Trzconski, and D. Boning,

“Performance variability of a 90GHz static CML frequency divider in 65nm SOI CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2007, pp 542-543.

[77] Agilent Technologies mm-wave Source Modules from OML, Inc. for the Agilent PSG Signal Generators, Agilent Technologies, Santa Clara, CA, 2005, pp. 3.

[78] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896–909, Jun. 2001.

[79] B. Razavi, “Design consideration for direct-conversion receivers,” IEEE Trans.

Circuit Syst. II, vol. 44, no. 6 pp. 428-435, June, 1997.

[80] A. A. Abidi, “Direct-conversion radio transceivers for digital communications,”

IEEE J. Solid-State Circuits, vol. 30, no. 12, pp. 1399–1410, Apr. 1995.

[81] W. Namgoong, “DC-offset and 1/f noise effects on ac-coupled direct-conversion receiver,” in Proc. IEEE Midwest Symp. on Circuits and Systems (MWSCAS), Aug. 2001, pp. 886-889.

[82] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “ A 900MHz CMOS LC-oscillator with quadrature outputs,” in IEEE Int. Solid-State Circuit Conf.

Dig., Feb. 1996, pp 392-393.

[83] M. L. Edwards and J. H. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microw. Theory Tech.,

vol. 40, no. 12, pp. 2303-2311, Dec. 1992.

[84] C. Y. Wu and C.Y. Yu, “A 0.8-V 5.9-GHz Wide-Tuning-Range CMOS VCO Using Inversion-Mode Bandswitching Varactors, in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), May 2005, pp. 5079-5082.

[85] W. S. Titus and J. G. Kenny, “10 GHz VCO for 0.13μm CMOS sonnet CDR,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig., June 2006.

[86] P. Andreani and S. Mattisson, “A 2.4-GHz CMOS Monolithic VCO based on an MOS Varactor,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), May-June, 1999, pp. 557-560.

[87] N. H. W. Fong, J. O. Plouchart, N. Zamdmer, D. Liu, L. F. Wagner, C. Plett, and N. G. Tarr, “Design of Wind-Band CMOS VCO for Multiband Wirless LAN Application,” IEEE J. Solid-State Circuit, vol. 38, no. 8, pp. 1333-1342, Aug.

2003.

[88] C. Samori, S. Levantino, and V. Boccuzzi, “A -94 dBc/Hz@100kHz, fully-integrated, 5 GHz, CMOS VCO with 18% tuning range for Bluetooth application,” in Proc. IEEE Custom Integrated Circuits Conf., May 2001, pp.

201-204.

[89] J. Maget, M. Tiebout, and R. Kraus, “Influence of novel MOS varactors on performance of a fully-integrated UMTS VCO in standard 0.25-μm CMOS technology,” IEEE J. Solid-State Circuit, vol. 35 no. 9, pp. 1360-1367, Sep.

2001.

[90] F. Svelto, S. Deantoni and R. Castello, “A 1mA, -120.5 dbc/Hz at 600 kHz from 1.9GHz fully tunable LC CMOS VCO,” in Proc. IEEE Custom Integrated Circuit Conf., May 2000, pp. 577-580.

[91] T. P. Liu, “A 6.5GHz Monolithic CMOS Voltage-Controlled Oscillator,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 1999, pp. 404-405.

[92] J. Lee, “A 75-GHz PLL in 90-nm CMOS technology,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2007, pp. 432-433.

簡 歷

姓名 :虞繼堯

性別 :男

出生日期 :民國 67 年 2 月 19 日 出生地 :台灣省 台北市

住址 :新竹縣竹北市勝利六街七號七樓

學歷 :

國立清華大學電機工程系畢業 (85 年 9 月- 89 年 6 月) 國立清華大學通訊工程所畢業 (89 年 9 月- 91 年 6 月) 國立交通大學電子研究所博士班 (91 年 9 月入學)

經歷 :

加拿大渥太華卡爾登大學短期研究 (93 年 8 月- 93 年 10 月)

論文名稱 : 應用於超寬頻通訊系統之互補式金氧半毫米波積體電路 設計與分析

The Design and Analysis of CMOS Millimeter-Wave Integrated Circuits for Ultra-Wideband Communication Systems

著作 :(見附件)

PUBLICATION LIST

(A)JOURNAL PAPERS

[1] Chung-Yu Wu and Chi-Yao Yu, “Design and analysis of a millimeter-wave direct injection locked frequency divider with large frequency locking range,”

IEEE Trans. Microwave and Theory Techniques, vol. 55, no. 8, pp. 1649-1658, Aug. 2007.

[2] Chi-Yao Yu and Chung-Yu Wu, “A 60-GHz CMOS Third-Order Sub-Harmonic Mixer with an On-Chip Wide-Tuning-Range VCO,” submitted to IEEE

Journal of Solid-State Circuits.

[3] Cheng-Shang Chang, Duan-Shin Lee, and Chi-Yao Yu, “Providing Guarantee Rate Services in the Load Balanced Birkhoff-von Neumann Switches,”

IEEE/ACM Trans. Networking, vol. 14, no. 3, pp. 644–656, Jun. 2006.

(B) CONFERENCE PAPERS

[1] Chung Yu Wu, and Chi-Yao Yu,“A 0.8-V 5.9-GHz Wide-Tuning-Range CMOS

[1] Chung Yu Wu, and Chi-Yao Yu,“A 0.8-V 5.9-GHz Wide-Tuning-Range CMOS