• 沒有找到結果。

Conclusions and Future Works

6.2 Future Works

In mixed-voltage I/O interfaces, the effective ESD protection circuits with consideration of gate current for nanoscale have been proposed and verified in this dissertation. But, the whole-chip ESD protection design for a real IC product with more complex circuits and power domains should be considered in nanoscale CMOS technology. The cross power domain ESD protection design should be verified with proposed low-leakage ESD protection designs. The design criterion of the power bus, ESD bus, and the device dimension of low-leakage ESD protection designs could be developed for a real IC product. Moreover, in nanoscale CMOS technology, the ESD protection circuits should be designed for CDM ESD event, which will be a serious challenge to protect ultra-thin gate-oxide, especially for the SoC applications with a large chip area. In high-voltage BCD technology, the ESD robustness and turn-on speed of the ESD protection design with has been improved and verified in this dissertation. In addition, the holding voltage of the stacked-device structure can be designed higher than the supply voltage to avoid the latchup or latchup-like issues in high-voltage BCD ICs. But the layout area of the stacked-device structure will increase as compared to that of the single device, especially for high ESD robustness requirement. The design of new device with the characteristics of both high holding voltage and efficient turn-on speed from the structure design or process modification will be a useful solution. For example, the SCR device or FOX device with high-holding behavior might be a good approach. By adjusting the well profiles of each junction, a non-snapback ESD device might be achieved. Such ESD topics will be the continual future works for research.

References

[1] H. S. Momose, M. Ono, T. Yoshitomo, T. Ohguro, S. Nakamura, M. Saito, and H.

Iwai, “1.5-nm direct-tunneling gate oxide Si MOSFETs,” IEEE Trans. Electron Devices, vol. 43, pp. 1233–1242, Aug. 1996.

[2] S.-H. Lo, D. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide MOSFET’s,”

IEEE Electron Device Lett., vol. 18, no. 5, pp. 209–211, May, 1997.

[3] X. Guo and T. P. Ma, “Tunneling leakage current in oxynitride: Dependence on oxygen/nitrogen content,” IEEE Electron Device Lett., vol. 19, pp. 207–209, June 1998.

[4] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.-R. Lin, “Limits of gate oxide scaling in nano-transistors,” in Proc. Symp. VLSI Technology, 2000, pp. 90–91.

[5] Y.-C. Yeo, Q. Lu, W.-C. Lee, T.-J. King, C. Hu, X. Wang, X. Guo, and T. P. Ma,

“Direct tunneling gate leakage current in transistors with ultra thin silicon nitride gate dielectric,” IEEE Electron Device Lett., vol. 21, pp. 540–542, Nov. 2000.

[6] Q. Xiang, J. Jeon, P. Sachdey, B. Yu, K. C. Saraswat, and M.-R. Lin, “Very high performance 40 nm CMOS with ultra-thin nitride/oxynitride stack gate dielectric and pre-doped dual poly-Si gate electrodes,” in Proc. Int. Electron Devices Meeting, 2000, pp. 860–862.

[7] F. Rana, S. Tiwari, D. A. Buchanan, “Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides,” Appl. Phys. Lett., Vol. 69, No. 8, pp.

1104–1106, Aug. 1996.

[8] N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, “Modeling study of ultra thin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1464–1471, 1999.

[9] W. C. Lee and C. Hu, “Modeling gate and substrate currents due to conduction- andvalence-band electron and hole tunneling,” in Tech. Dig. of Int. Symp. on VLSI Technology, 2000, pp. 198-199.

[10] T. Matsuoka, S. Kakimoto, M. Nakano, H. Kotaki, S. Hayashida, K. Sugimoto, K.

Adachi, S. Mosishita, K. Uda, Y. Sato, M. Yamanaka, T. Ogura, and J. Takagi, “Direct

tunneling N2O gate oxynitrides for low-voltage operation of dual gate CMOSFETs,”

in IEDM Tech. Dig., 1995, pp. 851–854.

[11] W. C. Lee, T. J. King, and C. Hu, “Evidence of hole direct tunneling through ultrathin gate oxideusing P+ poly-SiGe gate ,” IEEE Electron Device Lett., vol. 20, no. 6, pp.

268–270, June, 1999.

[12] K. N. Yang, H. T. Huang, M. J. Chen, Y. M. Lin, M. C. Yu, S.M. Jang, C. H. Yu, and M. S. Liang, “Edge hole direct tunneling in off-state ultrathin gate oxide p-channel MOSFETs,” in IEDM Tech. Dig., 2000, pp. 679–682.

[13] N. Yang, W. K. Henson, and J. Wortman, “A comparative study of gate direct tunneling and drain leakage currents in N-MOSFETs with sub-2nm gate oxides,”

IEEE Trans. Electron Devices, vol. 47, pp. 1636–1644, Aug. 2000.

[14] BSIM Model, Berkeley Short-Channel IGFET Model. [Online]. Available:

http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html

[15] T. J. Green and W. K. Denson, “A review of EOS/ESD field failures in military equipment,” in Proc. EOS/ESD Symp., 1988, pp. 7–14.

[16] ESD Association Standard Test Method ESD STM5.1-2001, for Electrostatic Discharge Sensitivity Testing – Human Body Model (HBM) – Component Level, 2001.

[17] ESD Association Standard Test Method ESD STM5.2-1999, for Electrostatic Discharge Sensitivity Testing – Machine Model (MM) – Component Level, 1999.

[18] A. Wang, On-Chip ESD Protection for Integrated Circuits, Boston, Kluwer, 2001.

[19] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, 2nd Edition, John Wiley & Sons, Ltd., England, 2002.

[20] S. Voldman, ESD Physics and Devices, John Wiley & Sons, Ltd., England, 2004.

[21] C. Duvvury, R. Rountree, and O. Adams, “Internal chip ESD phenomena beyond the protection circuit,” IEEE Trans. on Electron Devices, vol. 35, no. 12, pp. 2133–2139, Dec. 1988.

[22] C. Johnson, T. J. Maloney, and S. Qawami, “Two unusual HBM ESD failure mechanisms on a mature CMOS process,” in Proc. EOS/ESD Symp., 1993, pp.

225–231.

[23] M.-D. Ker and T.-L. Yu, “ESD protection to overcome internal gate oxide damage on

digital-analog interface of mixed-mode CMOS IC’s,” in Proc. Europe Symp.

Reliability of Electron Device, Failure Physics and Analysis, 1996, pp. 1727–1730.

[24] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuit for submicron CMOS VLSI,” IEEE Tran. Electron Devices, vol. 46, no.

1, pp. 173–183, Jan. 1999.

[25] T. Furukawa, D. Turner, S. Mittl, M. Maloney, R. Serafin, W. Clark, L. Longenbach, and J. Howard, “Accelerated gate-oxide breakdown in mixed-voltage I/O circuits,” in Proc. IEEE Int. Reliability Physics Symp., 1997, pp. 169–173.

[26] B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P. J. Roussel, and G.

Groeseneken, “Impact of MOSFET gate oxide breakdown on digital circuit operation and reliability,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 500–506, Mar. 2002.

[27] Y. Luo, D. Nayak, D. Gitlin, M.-Y. Hao, C.-H. Kao, and C.-H. Wang, “Oxide reliability of drain engineered I/O NMOS from hot carrier injection,” IEEE Electron Device Lett., vol. 24, no. 11, pp. 686–688, Nov. 2003.

[28] S. Dabral and T. Maloney, Basic ESD and I/O Design, John Wiley & Sons, 1998.

[29] M. Takahash, T. Sakurai, K. Sawada, K. Nogami, M. Ichida, and K. Matsud,

“3.3V-5V compatible I/O circuit without thick gate oxide,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 1992, pp. 23.3.1–23.3.4.

[30] M. J. M. Pelgrom and E. C. Dijkmans, “A 3/5 V compatible I/O buffer,” IEEE J.

Solid-State Circuits, vol. 30, no. 7, pp. 823–825, Jul. 1995.

[31] G. Singh and R. Salem, “High-voltage-tolerant I/O buffers with low-voltage CMOS process,” IEEE J. Solid-State Circuits, vol. 34, no. 11, pp. 1512–1525, Nov. 1999.

[32] A. J. Annema, G. Geelen, and P. De Jong, “5.5-V I/O in a 2.5-V 0.25-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 528–538, Mar. 2001.

[33] Y. Luo, D. Nayak, D. Gitlin, M.-Y. Hao, C.-H. Kao, and C.-H. Wang, “Oxide reliability of drain engineered I/O NMOS from hot carrier injection,” IEEE Electron Device Lett., vol. 24, no. 11, pp. 686–688, Nov. 2003.

[34] B. Serneels, T. Piessens, M. Steyaert, and W. Dehaene, “A high-voltage output driver in a standard 2.5V 0.25µm CMOS technology,” in IEEE Int. Solid-State Circuit Conf.

Dig. Tech. Papers, 2004, pp. 146–147.

[35] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Overview and design of mixed-voltage I/O

buffers with low-voltage thin-oxide CMOS transistors,” IEEE Trans. Circuits Syst. I:

Regular Papers, vol. 53, no. 9, pp. 1934–1945, Sep. 2006.

[36] W. Anderson and D. Krakauer, “ESD protection for mixed-voltage I/O using nMOS transistors stacked in a cascode configuration,” in Proc. EOS/ESD Symp., 1998, pp.

54–71.

[37] J. Miller, M. Khazhinsky, and J. Weldon, “Engineering the cascoded nMOS output buffer for maximum Vt1,” in Proc. EOS/ESD Symp., 2000, pp. 308–317.

[38] M.-D. Ker, H.-C. Hsu, and J.-J. Peng, “ESD Implantation for sub-quarter-micron CMOS technology to enhance ESD robustness,” IEEE Trans. Electron Devices, vol.

50, no. 10, pp. 2126–2134, Oct. 2003.

[39] V. A. Vashchenko, A. Concannon, M. Ter-Beek, and P. Hopper, “Physical limitation of the cascoded snapback nMOS ESD protection capability due to the non-uniform turn-off,” IEEE Trans. Device Mater. Reliab., vol. 4, no. 2 pp. 281–291, June 2004.

[40] J.-H. Lee, J.-R. Shih, Y.-H. Wu, and T.-C. Ong, “The failure mechanism of high voltage tolerance IO buffer under ESD,” in Proc. IEEE Int. Reliability Physics Symp., 2003, pp. 269–276.

[41] H. Ballan and M. Declercq, High Voltage Devices and Circuits in Standard CMOS Technologies, Kluwer Academic, 1998.

[42] M. P. J. Mergens, W. Wilkening, S. Mettler, H. Wolf, A. Stricker, and W. Fichtner,

“Analysis of lateral DMOS power devices under ESD stress conditions,” IEEE Trans.

Electron Devices, vol. 47, no. 11, pp. 2128–2137, Nov. 2000.

[43] C. Duvvury, F. Carvajal, C. Jones, and D. Briggs, “Lateral DMOS design for ESD robustness,” in IEDM Tech. Dig., 1997, pp. 375–378.

[44] C. Duvvury, D. Briggs, J. Rodrigues, F. Carvajal, A. Young, D. Redwine, and M.

Smayling, “Efficient npn operation in high voltage NMOSFET for ESD robustness,”

in IEDM Tech. Dig., 1995, pp. 345–348.

[45] C. Duvvury, J. Rodriguez, C. Jones, and M. Smayling, “Device integration for ESD robustness of high voltage power MOSFETs,” in IEDM Tech. Dig., 1994, pp.

407–410.

[46] J.-H. Lee, J.-R. Shih, C.-S, Tang, K.-C. Liu, Y.-H. Wu, R.-Y. Shiue, T.-C. Ong, Y.-K.

Peng, and J.-T. Yue, “Novel ESD protection structure with embedded SCR LDMOS

for smart power technology,” in Proc. IEEE Int. Reliability Physics Symp., 2002, pp.

156–161.

[47] M.-D. Ker and K.-H. Lin, “The impact of low-holding-voltage issue in high-voltage CMOS technology and the design of latchup-free power-rail ESD clamp circuit for LCD driver ICs,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1751–1759, Aug.

2005.

[48] G. Bertrand, C. Delage, M. Bafleur, N. Nolhier, J. Dorkel, Q. Nguyen, N. Mauran, D.

Tremouilles, and P. Perdu, “Analysis and compact modeling of a vertical grounded-base n-p-n bipolar transistor used as ESD protection in a smart power technology,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1373–1381, Sep. 2001.

[49] G. Notermans, O. Quittard, A. Heringa, Z. Mrcarica, F. Blanc, H. v. Zwol, T. Smedes, T. Keller, P. d. Jong, “Designing HV active clamps for HBM robustness,” in Proc. of EOS/ESD Symp., 2007, pp. 47-52.

[50] V. A. Vashchenko, Ph. Jansen, M. Scholz, P. Hopper, M. Sawada, T. Nakaei, T.

Hasebe, S. Thijs, “Voltage overshoot study in 20V DeMOS-SCR devices,” in Proc. of EOS/ESD Symp., 2007, pp. 53-57.

[51] J.-H. Lee, J.-R. Shih, Y.-H. Wu, B.-K. Liew, and H.-L. Hwang, “An analytical model of positive HBM ESD current distribution and the modified multi-finger protection structure”, in Proc. IEEE Int. Symp. Physical and Failure Analysis of Integrated Circuits (IPFA), 1999, pp. 162–167.

[52] Y. Christoforou and G. Deepak, “Active ESD protection design methodology for DC/DC converters,” in Proc. of EOS/ESD Symp., 2008, pp. 317-324.

[53] M.-D. Ker, T.-Y. Chen, C.-Y. Wu, H. Tang, K.-C. Su, and S.-W. Sun, “Novel input ESD protection circuit with substrate-triggering technique in a 0.25-μm shallow-trench-isolation CMOS technology,” in Proc. of IEEE Int. Symp. on Circuits and Systems, 1998, vol. 2, pp. 212-215.

[54] C. Duvvury, S. Ramaswamy, A. Amerasekera, R. Cline, B. H. Andresen, and V.

Gupta, “Substrate pump nMOS for ESD protection applications,” in Proc. of EOS/ESD Symp., 2000, pp. 7-17.

[55] M.-D. Ker and T.-Y. Chen, “Substrate-triggered technique for on-chip ESD protection design in a 0.18-μm salicided CMOS process,” IEEE Trans. Electron Devices, vol. 50,

pp. 1050-1057, 2003.

[56] M.-D. Ker, K.-H. Lin, and C.-H. Chuang, “On-chip ESD protection design with substrate-triggered technique for mixed-voltage I/O circuits in subquarter-micrometer CMOS process,” IEEE Trans. on Electron Devices, vol. 51, pp. 1628-1635, 2004.

[57] J. Smith, “A substrate triggered lateral bipolar circuit for high-voltage tolerant ESD protection applications,” in Proc. of EOS/ESD Symp., 1998, pp. 63-71.

[58] M.-D. Ker and C.-H. Chuang, “ESD protection design for mixed-voltage CMOS I/O buffers,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 1046-1055, 2002.

[59] S. Voldman and G. Gerosa, “Mixed-voltage interface ESD protection circuits for advanced microprocessors in shallow trench and LOCOS isolation CMOS technologies,” in Tech. Dig. of IEDM, 1994, pp. 277-280.

[60] S. Voldman, G. Gerosa, V. Gross, S. Dickson, N. Furkay, and J. Slinkman, “Analysis of snubber-clamped diode-string mixed voltage interface ESD protection network for advanced microprocessors,” in Proc. of EOS/ESD Symp., 1995, pp. 43-61.

[61] M. Tong, R. Gauthier, and V. Gross, “Study of gated PNP as an ESD protection device for mixed-voltage and hot-pluggable circuit applications,” in Proc. of EOS/ESD Symp., 1996, pp. 280-284.

[62] E. R. Worley, R. Gupta, B. Jones, R. Kjar, C. Nguyen, and M. Tennyson,

“Sub-micron chip ESD protection schemes which avoid avalanching junctions,” in Proc. of EOS/ESD Symp., 1995, pp. 13-20.

[63] C.-T. Wang and M.-D. Ker, “Design of power-rail ESD clamp circuit with ultra-low standby leakage current in nanoscale CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 956-964, Mar. 2009.

[64] L. K. Han, S. Biesemans, J. Heidenreich, K. Houlihan, C. Lin, V. McCahay, T. Schiml, A. Schmidt, U. P. Schroeder, M. Stetter, C. Wann, D. Warner, R. Mahnkopf, and B.

Chen, “A modular 0.13 m   bulk CMOS technology for high performance and low power applications”, in Proc. Symp. VLSI Technol. Dig. Tech. Papers, 2000, pp.

12-13.

[65] Z. Krivokapic, W. Maszara, K. Achutan, P. King, J. Gray, M. Sidorow, E. Zhao, J.

Zhang, J. Chan, A. Marathe, and M.-R. Lin, “Nickel silicide metal gate FDSOI devices with improved gate oxide leakage,” in IEDM Tech. Dig., 2002, pp. 271–274.

[66] K. Sathyaki and P. Paily, “Leakage reduction by modified stacking and optimum ISO input loading in CMOS devices,” in Proc. IEEE Int. Conf. on Advanced Computing and Communications, 2007, pp. 220–225.

[67] M. Agarwal, P. Elakkumanan, and R. Sridhar, “Leakage reduction for domino circuits in sub-65-nm technologies,” in Proc. IEEE Int. SOC Conf., 2006, pp. 164–167.

[68] D. Lee, D. Blaauw, and D. Sylvester, “Gate oxide leakage current analysis and reduction for VLSI circuits,” IEEE Trans. VLSI Systems, vol. 12, no. 2, pp. 155–166, Feb 2004.

[69] S. S. Poon and T. Maloney, “New considerations for MOSFET power clamps,” in Proc. EOS/ESD Symp., 2002, pp. 1–5.

[70] C. Diaz and G. Motley, “Bi-Modal triggering for LVSCR ESD protection devices,” in Proc. EOS/ESD Symp., 1994, pp. 106–112.

[71] C. Russ, M. Mergens, J. Armer, P. Jozwiak, G. Kolluri, L. Avery, and K. Verhaege,

“GGSCRs: GGNMOS triggered silicon controlled rectifiers for ESD protection in deep submicron CMOS processes,” in Proc. EOS/ESD Symp., 2001, pp. 22–31.

[72] P.-Y. Tan, M. Indrajit, P.-H. Li, and S.H. Voldman, “RC-triggered PNP and NPN simultaneously switched silicon controlled rectifier ESD networks for sub-0.18μm technology,” in Proc. of IEEE Int. Symp. on Physical and Failure Analysis of Integrated Circuits, 2005, pp. 71–75.

[73] M.-D. Ker and K.-C. Hsu, “Latchup-free ESD protection design with complementary substrate-triggered SCR devices,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp.

1380–1392, Aug. 2003.

[74] M.-D. Ker and K.-C. Hsu, “SCR device fabricated with dummy-gate structure to improve turn-on speed for effective ESD protection in CMOS technology,” IEEE Trans. Semiconductor Manufacturing, vol. 18, no. 2, pp. 320–327, May 2005.

[75] J. D. Sarro, K. Chatty, R. Gauthier, and E. Rosenbaum, “Evaluation of SCR-based ESD protection devices in 90nm and 65-nm CMOS technologies,” in Proc. of IEEE Int. Reliability Physics Symp., 2007, pp. 348–358.

[76] G. Wybo, S. Verleye, B. V. Camp, and O. Marchial, “Characterizing the transient device behavior of SCRs by means of VFTLP waveform analysis,” in Proc. EOS/ESD Symp., 2007, pp. 366–375.

[77] M.-D. Ker and W.-J. Chang, “ESD protection design with on-chip ESD bus and high-voltage-tolerant ESD clamp circuit for mixed-voltage IO buffers,” IEEE Trans.

Electron Devices, vol. 55, no. 6, pp. 1409-1416, Jun. 2008.

[78] L. Soon, D. T. M. Ling, M. Kuan, K.-W. Yee, D. Cheong, and G. Zhang, “Application of IR-OBIRCH to the failure analysis of CMOS integrated circuits,” in Proc. IEEE Int.

Symp. Physical and Failure Analysis of Integrated Circuits, 2003, pp. 86–91.

[79] J. Goldstein, D. E. Newbury, P. Echlin, C. E. Lyman, D. C. Joy, E. Lifshin, L. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edition, Springer, 2003.

[80] M.-D. Ker and C.-T. Wang, “ESD protection design by using only 1×VDD low-voltage devices for mixed-voltage I/O buffers with 3×VDD input tolerance,” in Proc. IEEE Asian Solid-State Circuits Conf., 2006, pp. 287–290.

[81] M.-D. Ker, C.-T. Wang, T.-H. Tang, and K.-C. Su, “Design of high-voltage-tolerant power-rail ESD clamp circuit in low-voltage CMOS processes,” in Proc. of IEEE Int.

Reliability Physics Symp., 2007, pp. 594–595.

[82] M.-D. Ker and C.-T. Wang, “Design of high-voltage-tolerant ESD protection circuit in low-voltage CMOS processes,” IEEE Trans. on Device and Materials Reliability, vol.

9, no. 1, pp. 49-58, Mar. 2009.

[83] M.-D. Ker and S.-L. Chen, “Mixed-voltage I/O buffer with dynamic gate-bias circuit to achieve 3×VDD input tolerance by using 1×VDD devices and single VDD supply,”

in IEEE Int. Solid-State Circuist Conf. Dig. Tech. Papers, 2005, pp. 524–525.

[84] M.-D. Ker, W.-Y. Chen, and K.-C. Hsu, “Design on power-rail ESD clamp circuit for 3.3-V I/O interface by using only 1-V/2.5-V low-voltage devices in a 130-nm CMOS process,” in Proc. of IEEE Int. Reliability Physics Symp., 2005, pp. 606–607.

[85] B. Murari, F. Bertoti, and G. A. Vignola, Smart Power ICs: Technologies and Applications, Berlin, Germany: Springer-Verlag, 2002.

[86] P. Wessels, M. Swanenberg, H. Zwol, B. Krabbenborg, H. Boezen, M. Berkhout, and A. Grakist, “Advanced BCD technology for automotive, audio and power applications,” Solid State Electron., vol. 51, no. 2, pp. 195–211, Feb. 2007.

[87] C. Duvvury, F. Carvajal, C. Jones, and D. Briggs, “Lateral DMOS design for ESD robustness,” in IEDM Tech. Dig., 1997, pp. 375–378.

[88] D. LaFonteese, V.Vashchenko, D. Linten, M. Scholz, S. Thijs, M. Sawada, T. Nakaei, T. Hasebe, P. Hopper, G. Groeseneken, P. L. Hower, and J. S. Brodsky,

“Self-protection capability of power arrays,” in Proc. EOS/ESD Symp., 2009, pp.

364–370.

[89] Y. Chung, H. Xu, R. Ida, W.-G. Min, and B. Baird, “ESD scalability of LDMOS devices for self-protected output drivers,” in Proc. IEEE. Int. Symp. on Power Semiconductor Devices & IC’s, 2005, pp. 351–354.

[90] M. P. J. Mergens, W. Wilkening, S. Mettler, H. Wolf, A. Stricker, and W. Fichtner,

“Analysis of lateral DMOS power devices under ESD stress conditions,” IEEE Trans.

on Electron Devices, vol.47, no. 11, pp. 2128–2137, Nov, 2000.

[91] R. M. Steinhoff, J.-B. Huang, P. L. Hower, and J. S. Brodsky, “Current filament movement and silicon melting in an ESD-robust DENMOS transistor,” in Proc.

EOS/ESD Symp., 2003, pp. 98–107.

[92] B. Keppens, M. P. J. Mergens, C. S. Trinh, C. C. Russ, B. V. Camp, and K. G.

Verhaege, “ESD protection solutions for high voltage technologies,” in Proc.

EOS/ESD Symp., 2004, pp. 289–298.

[93] R. Lewis and J. Minor, “Simulation of a system level transient-induced latchup event,” in Proc. EOS/ESD Symp., 1994, pp. 193–199.

[94] M.-D. Ker and S.-F. Hsu, “Physical mechanism and device simulation on transient-induced latchup in CMOS ICs under system-level ESD test,” IEEE Trans.

Electron Devices, vol. 52, no. 8, pp. 1821–1831, Aug. 2005.

[95] M.-D. Ker and S.-F. Hsu, Transient-Induced Latchup in CMOS Integrated Circuits, John Wiley & Sons, 2009.

Vita

姓 名:王暢資 (Chang-Tzu Wang) 性 別:男

出生日期:民國72 年 7 月 23 日 出 生 地:台北市

住 址:台北市內湖區康樂街 72 巷 17 弄 76 號 5 樓

學 歷:國立交通大學電子工程學系畢業 (90 年 9 月 – 94 年 1 月) 國立交通大學電子研究所碩士班 (94 年 2 月 – 95 年 2 月) 國立交通大學電子研究所博士班 (95 年 2 月入學)

論文名稱:積體電路電源線間具低漏電流之靜電放電防護電路設計 Low-Leakage Power-Rail ESD Protection Designs in CMOS Integrated Circuits