• 沒有找到結果。

桿菌屬臨床分離菌株抗真菌作用之分析 林芷妘、劉淑瑛 ; 邱政洵

N/A
N/A
Protected

Academic year: 2022

Share "桿菌屬臨床分離菌株抗真菌作用之分析 林芷妘、劉淑瑛 ; 邱政洵"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

桿菌屬臨床分離菌株抗真菌作用之分析 林芷妘、劉淑瑛 ; 邱政洵

E-mail: 9510773@mail.dyu.edu.tw

ABSTRACT

The object of this study is to examine 34 clinical isolates of Bacillus spp. from blood of pseudo bacteremia patients in Linkou Chang Gung Memorial Hospital, focusing on species classification, antifungal activity, and identification of antifungal gene and active components. Bacterial classification was based on phenotyping (catalase test, reduction of nitrate, hemolysis test, indole production test, citrate utilization test, urease test, Voges-Proskauer test) and genotyping (polymerase chain reaction). All 34 clinical isolates of Bacillus spp. belonged to 8 species: B. cereus, B. thuringiensis, B. coagulans, B. licheniformis, B. pumilus, B. megaterium, B.

circulans and B. firmus. From the results of antifungal analysis, B. thuringiensis CG 2, B. thuringiensis CG 4, B. pumilus CG 12, B.

cereus CG 15, B. cereus CG 20 and B. cereus CG 26 exhibited significant antifungal activities. These six isolates were further analysed for their antifungal mechanism on Paecilomyces variotii T??37. It’s well known that Bacillus subtilis F29-3 produces one antibiotic--fengycin, which effectively inhibits the growth of filamentous fungi. According to the sequence of fenB, 3 PCR primer sets were designed to analyze whether any of these 34 clinical isolates of Bacillus spp. contained fenB gene of fengycin. With one primer set, a 1.0 Kb fragment can be amplified in all 6 isolates with antifungal activity. The sequence of the PCR product showed high homology to ilvD. Whether ilvD is related to the antifungal activity remained to be elucidated. Furthermore, to identify the active components contributing to the antifungal activity, the fermentation supernatant were obtained from 6 isolates with antifungal activity and B. subtilis F29-3. After filtration, the supernatants showed no antifungal activity to Paecilomyces variotii T??37. It appeared that only viable bacteria expressed antifungal activity.

Keywords : Bacillus spp., fengycin, antifungal activity

Table of Contents

簽名頁 授權書 iii 中文摘要 iv 英文摘要 vi 誌謝 viii 目錄 ix 圖目錄 xii 表目錄 xiv 第一章 緒論 1 1.1 Bacillus spp.之特性 1 1.2 真 菌之特性 4 1.3 抗真菌劑(antifungal drug) 6 1.4 菌種鑑定之方法 8 1.5 研究目的 15 第二章 實驗材料與方法 16 2.1 實驗材 料 16 2.1.1 菌種 16 2.1.2 培養基、試劑 16 2.2 實驗方法 16 2.2.1 鏡檢 16 2.2.2 生化鑑定 17 2.2.3 分子鑑定 19 2.2.4 抗真菌作 用之測試 19 2.2.5 基因組DNA之純化 20 2.2.6 聚合?鏈鎖反應 21 2.2.7 從瓊脂凝膠中回收DNA片段(Recovering of digested DNA fragment from agarose gel) 22 2.2.8 定序分析 22 2.2.9 細菌醱酵液抗真菌作用之測試 23 2.2.10 真菌與細菌共同培養之 抗真菌作用測試 24 第三章 結果與討論 27 3.1 Bacillus spp.之鑑定結果 27 3.2 真菌孢子濃度之測定 29 3.3 抗真菌作用測試之 結果 30 3.4 Bacillus spp.與fenB之關係 32 3.5 抗真菌成份之探討 33 3.6 細菌與真菌共同培養之探討 34 第四章 結論 36 參考文 獻 72 附錄一、菌種 77 附錄二、培養基、試劑 78 附錄三、本實驗中聚合?鏈鎖反應(16S rDNA之HV region、rpoB)所用 的引子及其鹼基序列 82 附錄四、聚合?鏈鎖反應(引子:16S rDNA之HV region、rpoB)之反應條件(1)及反應混合液

(2) 83 附錄五、本實驗中聚合?鏈鎖反應(fenB)所用引子之設計 84 附錄六、本實驗中聚合?鏈鎖反應(fenB)所用的引 子及其鹼基序列 85 附錄七、聚合?錄鎖反應(引子:fenB)之反應條件(1)及反應混合液(2) 86 圖 目 錄 頁次 圖1-1 ?朵 試驗反應式之一 10 圖1-2 ?朵試驗反應式之二 11 圖1-3 檸檬酸試驗之反應式 11 圖1-4 VP test作用之反應式 13 圖一、以rpoB 為依據之34株桿菌屬臨床分離菌株演化樹狀圖 40 圖二、34株桿菌屬臨床分離菌株細胞於顯微鏡下放大1,000倍所看到的形 態 41 圖三、Bacillus spp.抗真菌Penicillium spp.的測試 47 圖四、Bacillus spp.抗真菌Aspergillus versicolor的測試 48 圖五

、Bacillus spp.抗真菌Trichophyton rubrum的測試 49 圖六、Bacillus spp.抗真菌Fusarium spp.的測試 50 圖七、Bacillus spp.抗 真菌Paecilomyces variotii Tu137的測試 51 圖八、Bacillus thuringiensis CG 2、B. thuringiensis CG 4、B. pumilus CG 12、B.

cereus CG 15、B. cereus CG 20、B. cereus CG 26及枯草桿菌F29-3抗真菌的測試 52 圖九、Bacillus thuringiensis CG 2、B.

thuringiensis CG 4、B. pumilus CG 12、B. cereus CG 15、B. cereus CG 20、B. cereus CG 26及枯草桿菌F29-3培養七天之菌液 的抗真菌測試 54 圖十、Bacillus thuringiensis CG 2、B. thuringiensis CG 4、B. pumilus CG 12、B. cereus CG 15、B. cereus CG 20、B. cereus CG 26及枯草桿菌F29-3培養七天之醱酵液的抗真菌測試 56 圖十一、Bacillus thuringiensis CG 2、B.

thuringiensis CG 4、B. pumilus CG 12、B. cereus CG 15、B. cereus CG 20、B. cereus CG 26及枯草桿菌F29-3與真菌不同濃度 比(細菌:真菌孢子液=10:1)共同培養五天之菌液的抗真菌測試 58 圖十二、Bacillus thuringiensis CG 2、B. thuringiensis CG 4、B. pumilus CG 12、B. cereus CG 15、B. cereus CG 20、B. cereus CG 26及枯草桿菌F29-3與真菌不同濃度比(細菌:

真菌孢子液=10:1)共同培養五天之醱酵液的抗真菌測試 60 表 目 錄 頁次 表一、34株革蘭氏陽性菌臨床分離菌株之生化 鑑定 62 表二、34株革蘭氏陽性菌臨床分離菌株之菌種鑑定推測結果 64 表三、34株革蘭氏陽性菌臨床分離菌株對五株真菌

(2)

之抑制作用 65 表四、Bacillus thuringiensis CG 2、B. thuringiensis CG 4、B. pumilus CG 12、B. pumilus CG 14、B. cereus CG 15、B. cereus CG 20及B. tubtilis F29-3抗真菌能力之比較 67 表五、Bacillus thuringiensis CG 2、B. thuringiensis CG 4、B.

pumilus CG 12、B. cereus CG 15、B. cereus CG 20、B. cereus CG 26及B. subtilis F29-3培養不同天數之抗真菌(Paecilomyces variotii Tu137)能力比較 68 表六、(A)Bacillus thuringiensis CG 2、B. thuringiensis CG 4、B. pumilus CG 12、B. cereus CG 15、B. cereus CG 20、B. cereus CG 26及B. subtilis F29-3與真菌(Paecilomyces variotii Tu137)共同培養不同天數與不同濃度 比之抗真菌(Paecilomyces variotii Tu137)能力比較 69 表六、(B)Bacillus thuringiensis CG 2、B. thuringiensis CG 4、B.

pumilus CG 12、B. cereus CG 15、B. cereus CG 20、B. cereus CG 26及B. subtilis F29-3與真菌(Paecilomyces variotii Tu137)

共同培養不同天數與不同濃度比之抗真菌(Paecilomyces variotii Tu137)能力比較 70 表六、(C)Bacillus thuringiensis CG 2、B. thuringiensis CG 4、B. pumilus CG 12、B. cereus CG 15、B. cereus CG 20、B. cereus CG 26及B. subtilis F29-3與真菌

(Paecilomyces variotii Tu137)共同培養不同天數與不同濃度比之抗真菌(Paecilomyces variotii Tu137)能力比 71 REFERENCES

陳奇良。1995。枯草桿菌(Bacillus subtilis)F29-3中豐原素合成基因的分析。國立中興大學植物學研究所博士論文。 Bailey, E. M., D. J.

Krakovsky, and M. J. Rybak. 1990. The triazole antifungal agents: a review of itraconazole and fluconazole. Pharmacotherapy 10:146-153. Brunel, B., C. Perissol, M. Fernandez, J. M. Boeufgras, and J. Le Petit. 1994. Occurrence of Bacillus species on evergreen oak leaves. FEMS Microbiol.

Ecol. 14:331-342. Chitarra, G. S., P. Breeuwer, M. J. Nout, A. C. van Aelst, F. M. Rombouts, and T. Abee. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94:159-166. Dismukes, W.

E. 2000. Introduction to antifungal drugs. Clin. Infect. Dis. 30:653-657. Drobniewski, F. A. 1993. Bacillus cereus and related species. Clin.

Microbiol. Rev. 6:324-338. Errington, J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1:117-126. Gallis, H.

A., R. H. Drew, and W. W. Pickard. 1990. Amphotericin B: 30 years of clinical experience. Rev. Infect. Dis. 12:308-329. Gonzalez-Pastor, J. E., E.

C. Hobbs, and R. Losick. 2003. Cannibalism by sporulating bacteria. Science 301:510-513. Goto, K., T. Omura, Y. Hara, and Y. Sadaie. 2000.

Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J. Gen. Appl. Microbiol. 46:1-8.

Grossman, A. D. and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A 85:4369-4373.

Harrell, L. J., G. L. Andersen, and K. H. Wilson. 1995. Genetic variability of Bacillus anthracis and related species. J. Clin. Microbiol.

33:1847-1850. Hopwood, D. A. 1978. Extrachromosomally determined antibiotic production. Annu. Rev. Microbiol. 32:373-392. Hopwood, D. A.

and D. H. Sherman. 1990. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu. Rev. Genet. 24:37-66. Jean F.

Mac Faddin. 2000. Biochemical tests for identification of medical bacteria. Lippincott Williams and Wilkins. 508-509. Jensen, G. B., P. Larsen, B.

L. Jacobsen, B. Madsen, L. Smidt, and L. Andrup. 2002. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B.

thuringiensis-based pesticides. Appl. Environ. Microbiol. 68:4900-4905. Kado, C. I. and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145:1365-1373. Kirby, R. and D. A. Hopwood. 1977. Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). J. Gen. Microbiol. 98:239-252. Kowalsky, S. F. and D. M. Dixon. 1991.

Fluconazole: a new antifungal agent. Clin. Pharm. 10:179-194. Lin, T. P., C. L. Chen, L. K. Chang, J. S. Tschen, and S. T. Liu. 1999. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. J. Bacteriol. 181:5060-5067. Liu, P. Y., S. C. Ke, and S. L.

Chen. 1997. Use of pulsed-field gel electrophoresis to investigate a pseudo-outbreak of Bacillus cereus in a pediatric unit. J. Clin. Microbiol.

35:1533-1535. Loeffler, W., J. S. M. Tschen, N. Vanittanakom, M. Kugler, E. Knorpp, and T. G. Wu. 1986. Antifungal effects of bacilysin and fengycin from Bacillus subtilis F29-3. A comparison with activities of other Bacillus antibiotics. J. Phytopathol. 115:204-213. Mader, U., S. Hennig, M. Hecker, and G. Homuth. 2004. Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes. J. Bacteriol. 186:2240-2252. Martin, M. F. and P. Liras. 1989. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu. Rev. Microbiol. 43:173-206. Munimbazi, C. and L. B. Bullerman. 1998.

Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J. Appl. Microbiol. 84:959-968. Okstad, O. A., I. Hegna, T.

Lindback, A. L. Rishovd, and A. B. Kolsto. 1999. Genome organization is not conserved between Bacillus cereus and Bacillus subtilis.

Microbiology 145:621-631. Qi, Y., G. Patra, X. Liang, L. E. Williams, S. Rose, R. J. Redkar, and V. G. DelVecchio. 2001. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl. Environ. Microbiol. 67:3720-3727. Speck, M. L.

1984. Compecdium of methods for the microbiological examination of foods. 454-467. Tschen, J. S.-M., and J. M. Liu. 1977. Nocardia sp. as antagonists to Rhizoctonia solani. Plant Protect Bull. 19:301-303. Tschen, J. S.-M. 1987. Control of Rhizoctonia solani by Bacillus subtilis. Trans.

Mycol. Soc. Japan. 28:483-493. Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung. 1986. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F29-3. J. Antibiot. 39:888-901. Wingard, J. R. and H. Leather. 2004. A new era of antifungal therapy. Biol. Blood Marrow Transplant. 10:73-90. Yao, S., X. Gao, N. Fuchsbauer, W. Hillen, J. Vater, and J. Wang. 2003. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr. Microbiol. 47:272-277.

參考文獻

相關文件

一、對抗生素Meropenem Trihydrate 具抗藥性(R 菌)和不具抗藥性(S 菌)的 Acinetobacter baumannii 菌在蛋白質電泳實驗中,比較蛋白質表現的差異。(文中所用代號: 「R

狼尾草(Pennisetum purpureum)為本國主要之青芻料之一,是以兩個高產狼尾草 A146 與

(3) Day 6, 04Nov2015, subject 5120001:病人轉用 口服抗生素若為 pathogen based therapy,依計 畫要求應先提供細菌培養報告並取得medical

使用完畢,開啟 Turbomass 軟體中之 Tune Page,點選 Shutdown 檔案,Mass 會自動 將 Source 及 Transfer line

使金屬離子均勻分散在纖維中而具有抗菌作用。抗菌

而在後續甲烷化反應試驗方面,以前段經厭氧醱酵產氫後之出流水為進流基 質。在厭氧光合產氫微生物方面,以光合作用產氫細菌中產氫能力最好的菌株 Rhodopseudomonas palustris

10 SF12259A 黃文豊 一項隨機分配、開放性、多中心臨床 試驗,對於先前未接受過治療的 CD20 表面抗原陽性之瀰漫性大型 B 細胞淋 巴瘤或 CD20 表面抗原陽性之濾泡性

評估以 S-649266 或最佳現有療法進行治療罹患抗 Carbapenem 革蘭氏陰性菌感染的患者的臨床結果 (包括詴驗用藥 S-649266