• 沒有找到結果。

雷射二極體物鏡表面瑕疵之光學自動檢測系統研究 洪偉翔、陳昭雄

N/A
N/A
Protected

Academic year: 2022

Share "雷射二極體物鏡表面瑕疵之光學自動檢測系統研究 洪偉翔、陳昭雄"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

雷射二極體物鏡表面瑕疵之光學自動檢測系統研究 洪偉翔、陳昭雄

E-mail: 9606972@mail.dyu.edu.tw

摘 要

本論文主要以影像視覺系統架構下,發展雷射二極體物鏡瑕疵之自動檢測技術。本研究由CCD影像擷取系統取得雷射二極 體物鏡影像,再透過影像處理技術進行瑕疵檢測。而瑕疵檢測方法,我們分別發展空間域與頻率域兩種影像處裡技術。在 空間域中,首先利用影像色彩空間轉換,得到物鏡清晰灰階影像,且透過中值濾波、二值化、編幅長碼等方法,降低環境 雜訊之干擾,並且尋找物鏡邊界點座標,再經由最小平方法找出最佳的物鏡位置,最後再結合Otsu與型態學方法做瑕疵辨 識。而頻率域中是應用Haar小波轉換技術,以擷取物鏡影像在不同空間尺度(Scale)位置下的頻率域特徵來做瑕疵檢測,

包括物鏡裂痕和污點等瑕疵,並經由實際實驗來證明本文所提方法之有效性。

關鍵詞 : 雷射二極體 ; 瑕疵檢測 ; 影像處理 ; 機器視覺

目錄

中文摘要... iv 英文摘要... v 誌謝... vi 目 錄... vii 圖目錄... x 表目錄... xiii 第一章 緒 論... 1 1.1 研究背景... 1 1.2 研究目的... 2 1.3 研究方

法... 3 1.4 文獻回顧... 4 1.5 論文架構... 6 第二章 雷射二極體光學 自動檢測系統架構 8 2.1 硬體架構... 8 2.2 雷射二極體構造... 14 2.3 物鏡瑕疵之種 類... 16 2.4 光源選擇... 17 2.5 照明方式... 19 第三章 空間域瑕疵檢測 影像處理系統流程... 23 3.1 影像色彩轉換... 25 3.2 影像濾波器... 27 3.2.1 低通濾 波... 27 3.2.2 高通濾波... 29 3.2.3 中通濾波... 30 3.3 影像二值 化... 31 3.3.1 平均灰階法... 32 3.3.2 Otsu影像二值化... 34 3.4偵測物鏡位 置... 37 3.5 形態學... 43 3.5.1 侵蝕(erosion)... 44 3.5.2 膨脹(dilation

)... 45 3.5.3 閉合運算與斷開運算... 46 3.6 空間域瑕疵辨識... 47 第四章 頻率域瑕 疵檢測影像處理系統流程... 49 4.1 傅立葉分析... 49 4.2 短時間傅立葉轉換... 50 4.3 小 波轉換(Wavelet Transform)... 52 4.3.1 Haar小波轉換... 52 4.3.2 Haar小波反轉換...

55 4.4 頻率域瑕疵檢測... 57 第五章 實驗與結果... 59 第六章 結論... 71 參考文獻... 72

參考文獻

[1]A. V. Andrianov, I. Harrison, M. Dorin, R. B. Kerr, J. Noto, and E. C. Larkins, “A spectroscopically resolved photo- and electroluminescence microscopy technique for the study of high-power and high-Brightness laser diodes,” IEEE Trans. on instrumentation and measurement, Vol.54, No.3, pp. 1079-1088, 2005.

[2]J. W. Tomm, A. Gerhardt, T. Elsaesser, D. Lorenzen, and P. Hennig, “Simultaneous quantification of strain and defects in high-power diode laser devices,” Appl. Phys. Lett., Vol. 81, pp. 3269–3271, 2002.

[3]J. W. Tomm, A. Gerhardt, R. Muller, V. Malyarchuk, Y. Saint-Marie, P. Galtier, J. Nagle, and J. P. Landesman, “Spatially resolved spectroscopic strain measurements on high-power laser diode bars,” J. Appl. Phys., Vol.93, pp. 1354–1362, 2003.

[4]C. Larkins, “Micro-electroluminescence spectroscopy investigation of mounting-induced strain and defects on high-power GaAs/AlGaAs laser diodes,” Opt. Quantum Electron., Vol. 35, pp. 1099–1106, 2003.

[5]X. Wu, “YIQ vector quantization in a new color palette architecture,” IEEE Trans. on instrumentation and measurement, Vol.5, No.2, pp.

321-329, 1996.

[6]B. Lien, “Efficient implementation of binary morphological image processing,” Optical engineering, Vol.33, No.11, 1994.

[7]K. Sakurai, A. Onoyama, T. Fujii, K. I. Yamanishi, S. Fujii, and H. Morita, “Solution of pattern maching inspection problem for grainy metal layers,” IEEE Trans. Semiconduct. Manufact. , Vol.15, No.1, pp. 118-126, 2002.

[8]W. Xlan, Y. Zhang, Z. Tu, and E. L. Hall, “Automatic visual inspection of the surface appearance defects of bearing roller,” Proceedings IEEE International Conference on Robotics and Automation, Vol.3, pp. 1490-1494, 1990.

(2)

[9]N. Otsu, “A threshold selection method from gray level histogram,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-8, pp. 62-66, 1978.

[10]Rik Van de Walle, Harrison H. Barrett, Kyle J. Myers, “Reconstruction of mr images from data acquired on a general nonregular grid by pseudoinverse calculation,” IEEE Trans. on Medical Imaging, Vol.19, No.12, pp. 1160-1167, 2000.

[11]M. P. Rigney, G. H. Brusewitz, and G.. A. Kranzler, “Asparagus defect inspection with machine vision,” American society of agricultural engineers, Vol.35, No6, pp. 1873-1878, 1992.

[12]A. Haar, “Theorie der orthogonalen funktionen–systeme,” Mathematische annalen, Vol.69, pp. 331- 371, 1910.

[13]C. H Chan , and K. H. Pang,” Fabric defect detection by fourier analysis,” IEEE Trans. on industry applications, Vol.36, No.5, pp.

1267-1276, 2000.

[14]D. M. Tsai, and C. Y. Hsieh, “Automated surface inspection for directional textures,” Image and Vision Computing, Vol.18, pp. 49-62, 1999.

[15]A. Grossmann, and J. Morlet, “Decomposition of hardy function into square integrable wavelets of constant shape,” SIAM J. math. anal., Vol.15, No.4, pp. 736-783, 1984.

[16]S. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Transaction on pattern analysis and machine intelligence, Vol.11, No.11, pp.674-693, Jul. 1989.

[17]I. Daubechies, “Orthonomal bases of compactly supported wavelets,” Communications on pure and applied mathematics, Vol.XLI, pp.

909-996, 1988.

[18]I. Daubechies, “The wavelet transform, time frequency localization and signal analysis,” IEEE Transactions on information theory, Vol.36, No.5, pp. 961-1005, 1990.

[19]王定一,“印刷電路板製程瑕疵檢測與分析之研究”,碩士論文,中原大學工業工程研究所,2000。

[20]林宜弘,“機器視覺應用技術講義”,國立屏東科技大學,1997。

[21]鄭志祥, “影像次像素應用在米粒檢測之研究”,國立中興大學農業機械工程學系碩士論文,2002。

參考文獻

相關文件

Results of this study show: (1) involvement has a positive effect on destination image, and groups with high involvement have a higher sense of identification with the “extent

Singleton,”A methd for computing the fast Fourier Transform with auxiliary memory and limited high-speed storage”, IEEE Trans. Audio

Kwong, “Metal nanocrystal memory with high-k tunneling barrier for improved data retention, ” IEEE Trans. Electron

We have investigated, designed, and completed the testing of the novel auto leveling, multiple-directing, high refined laser light line red and green laser cross line indictor..

Zhang, “A flexible new technique for camera calibration,” IEEE Tran- scations on Pattern Analysis and Machine Intelligence,

Sugii, “Junction profile engineering with a novel multiple laser spike annealing scheme for 45-nm node high performance and low leakage CMOS technology,” in IEDM

Lin, “Automatic Music Genre Classification Based on Modulation Spectral Analysis of Spectral and Cepstral Features”, IEEE Trans.. on

The study applies Discriminate Analysis to discuss the aspects of Junior high school students living Adjustment Scale and then develops a scale to be the standard of Junior