• 沒有找到結果。

急性運動介入對注意力缺陷過動症兒童安靜腦波之影響

N/A
N/A
Protected

Academic year: 2021

Share "急性運動介入對注意力缺陷過動症兒童安靜腦波之影響"

Copied!
65
0
0

加載中.... (立即查看全文)

全文

(1)

(2) 2015. !. 6. i!.

(3) Effects of Acute Exercise on Resting EEG in Children with Attention-Deficit Hyperactivity Disorder. !. ii!.

(4) !. iii!.

(5) !. iv!.

(6) ……………………………………………….…………...…………i ……………………………………………….…………...…………ii …………………………………………………….…………...…………iv …………………………………………………….…………...…………v …………………………………………………….…………...……vii …………………………………………………….…………...…………viii. …...……………………………………………………………1 ……………………………………………………………………1 …...…………………………………………………………………4 ….……………………………………………………………4 …...……………………………………………………5 …...…………………………………………………………5. …...…………………………………..…………………6 ……………………………………6 ...………………………………………………8 ……………………...………………..…..…………10 …...…………………………………………………………………12. …...…………………………………..…………………13 v".

(7) ……………………………………………………………………13 ……………………………………………………………..……14 ……………………………………………………………………14 ……………………………………………………………15 ……………………………………………………………15 ……………………………………………………………17 ……………………………………………………………17. …...…………………………………..…………………19 ………………………………19 …………………………..……23. …...…………………………………..…………………33 ………………………………33 …………………………..……35. ……………………………..…………………39 ………………………………………………………………39 …………………………………………………………..……40. …...…… ……………………………..………………… 41 …...…………………………………..………………… 50. vi".

(8) 3-1…...…………………………………..…………………17 4-1…...…………………………………..…………………19 4-2…...…………………………………..…………………20 4-3…...…………………………………..…………………21 4-4…...…………………………………..…………………21 4-5…...…………………………………..…………………21 4-6…...…………………………………..…………………22 4-7…...…………………………………..…………………25 4-8…...…………………………………..…………………26 4-9…...…………………………………..…………………28 4-10…...…………………………………..…………………30 4-11…...…………………………………..…………………32. vii".

(9) 3-1…...…………………………………..…………………13 3-2…...…………………………………..…………………15 4-1…...…………………………………..…………………20 4-2…...…………………………………..…………………23 4-3…...…………………………………..…………………24 4-4…...…………………………………..…………………24 4-5…...…………………………………..…………………27 4-6…...…………………………………..…………………29 4-7…...…………………………………..…………………31. viii".

(10) Attention Deficit Hyperactivity Disorder, ADHD 7.09%-12.04% 2006. DSM-IV-TR American Psychiatric. Association, 2000 Smalley, 1997. Barkley, 1990. 81%. 29%. Gilger, Pnington, & DeFries, 1992. Bush, Valera, & Seidman, 2005 Hypo-arousal. Rowe, 2005 Tamm, 2009 Hypo-arousal. Ritalin Concerta. Methylphenidate 1.

(11) (Semrud-Clikeman, Pliszka, & Liotti, 2008;) (Alvarez & Emory, 2006; Miyake et al., 2000) (Gioia, Isquith, & Guy, 2001) (Doyle et al., 2005). (Seidman, Valera, & Makris, 2005) (Pliszka, 2005) (Middleton & Strick,. 2002; Pennington, 2002). (Booth et al., 2005). Gapin & Etnier, 2010; Chang et al., 2012; Smith et al., 2013. (Sibley and Etnier, 2003) (ES=0.37). (ES range from. 0.29 to 0.35) (Halperin and Healey, 2011). ADHD (Petzinger and colleagues,. 2007) Foley and Fleshner (2008) (McMorris, Collard, Corbett, Dicks, & Swain, 2008; McMorris et al., 2009) Endres et al.,2003; Swain et al., 2003 neurotrophic factor, BDNF. brain-derived. Cotman and Berchtold, 2002 Fulk et al., 2004. 2.

(12) Barry, Clarke, & Johnstone, 2003; Monastra, 2008 theta theta/alpha. alpha beta theta/beta. Lansbergen, Arns, van Dongen-Boomsma, Spronk, & Buitelaar, 2011; Snyder & Hall, 2006 Hypo-arousal Hermens et al., 2005; Sumich et al., 2009. McMorris, Collard, Corbett, Dicks, & Swain, 2008 BDNF Gómez-Pinilla, Ying, Roy, Molteni, & Edgerton, 2002 Berchtold, & Christie, 2007. 3. Cotman,.

(13) 1. 2.. 1. theta alpha beta theta/Alpha theta/Beta 2. theta alpha beta theta/Alpha theta/Beta. 4.

(14) DSM-IV-TR American Psychiatric Association, 2000. Caspersen Powell. Christenson. 1985. physical activity. Ratey (65%~75%). 20. 8~12. 1.. 2.. 3 1. 5. 2009.

(15) Attention deficit hyperactive disorder 7.09%-12.04%. 2006 2000. Diagnostic and Statistical Manual,. DSM-IV-TR. — 3 1. Barkley. 1997. Barkley, 1997. Rowe 2005 hypo-arousal. (TRN) Hypo-arousal. 6. —.

(16) Theta. Clarke et al., 2008 Alpha Beta. 1970. Satterfield. Barry et al., 2003. 1974. EEG. EEG (epileptiform spike and wave activity). underarousal. maturational delay Satterfield, 1973. underarousal. Theta. beta. attentional arousal. frontocentral. Theta/Beta Monastra, 2001. Liechti. 2013 32. 22. 55. 8. 32. 16 21. 30. Theta Beta Theta/Beta Theta Theta. van Dongen-Boomsma. 2010 Theta/Beta Theta. Theta/Alpha. Alpha Beta ADHD. omission error Shi. Theta/Beta 2012 7.

(17) visual and auditory continuous performance test, CPT Theta Theta/Beta. Beta. CPT Theta. Theta/Beta. Snyder & Hall, 2006 reliability. CPT Alpha. Theta/Beta. 3.08. 0.96. (0.99). Clarke. 2013. Skin conductance level, SCL. Theta/Beta Beta. Theta 19. 67. Hypoarousal Theta EEG. Theta/Beta Loo & Makeig, 2012. Ritalin Atomoxetine Norepinephrine. 8. Concerta. 85.

(18) 2006 brain-derived neurotrophic factor, BDNF. 2006. 2010. 2010 Gapin & Etnier, 2010; Smith et al., 2013 Potifex , 2012. Tantillo. 2002 65 2.5% Wigal. 2003 30. 50%. Medina. 2010 CPT. 9. 75% VO2 max. 5. 25.

(19) Gapin. Etnier. 2010. Pontifex. 2012. hypo-arousal. Lardon. Polich 1996 2. 12. Delta. Theta 4-8Hz Beta1 12-20Hz. Alpha1. 7.5-9.5Hz. Alpha2. Beta2 20-70Hz. Moraes Deslandes, Cagy, Pompeu, …… , Piedade, 2007 FP1 F3 F4. 20 10. 10. Moraes, Ferreira,. 10 C4. Beta 14-30Hz Bailey. and Miller, 2008. 12. 12. 0.25-4Hz 9.5-12.5Hz. 24. Bailey, Hall, Folger.

(20) Schneider Brümmer, Abel, Askew, & Strüder, 2009. 12. Schneider,. arm crank 12. Alpha. Beta. Brodmann. Brümmer. Brümmer, Schneider, Strüder, & Askew, 2011. 26. Hall. Hall, Ekkekakis, & Petruzzello, 2010. 30. Ventilation threshold, VT. Energetic arousal F3-F4 VT VT. EA. EA. Tense arousal TA F7-F8. F7-F8 F3-F4. EA. EA. 11. EA. VT.

(21) 12.

(22) 3-1. 3-1. 13.

(23) 23 4. 19. 9.56±1.52. 24 23. 10.11±1.09. NeuroScan Synamps 10-20. Scan4.5. International 10-20 system. Fpz. VEOG HEOG. (A/D rate). 500. / ,. / 0.5Hz. 5kΩ. NeuroScan Synammps Stim 2.0. 14. 70Hz.

(24) RPE Borg. 1962 6-20 very light. hard. 15. 7. very, very light. 11 hard. fairly light 17. 13. very hard. very, very hard. 3-2. 15. 9 somewhat. 19.

(25) 10%. 16.

(26) 2. epoch. 30Hz Theta. 100µV 4-7.5Hz. 13-25Hz. Alpha 8-12.5Hz. Beta. Theta/Alpha. Theta/Beta 3-1. Frontal (F). F3, Fz, F4. Frontal central (FC). FC3, FCz, FC4. Central (C). C3, Cz, C4. Central parietal (CP). CP3, CPz, CP4. Parietal (P). P3, Pz, P4. Occipital (O). O1, Oz, O2. SPSS. 17.

(27) 1.. 2.. α = .05. 18.

(28) χ2=9.464, p=.0.396 4-1 ADHD. Normal. 11. 0. 1. 1. 18. 3. 7. 10. 22. 4. 4. 8. 25. 0. 3. 3. 29. 5. 5. 10. 33. 1. 0. 1. 36. 1. 1. 2. 40. 1. 0. 1. 43. 2. 0. 2. 47. 1. 2. 3. 18. 23. 41. 4-1 F(1, 39)=1.873, p =.179 n=23. 9.56±1.52. n=19. 10.11±1.09. 19.

(29) Alpha F(2, 39)=4.578, p=.039,η2=.105 F(2, 39)=4.471, p=.041,η2=.103. Central parietal (. 4-1). 4-1. 4-2 1. 4-2. Theta. 4-6. (Ln V2). ADHD. Normal. F. p. F. 2.1132 ± 0.4127. 2.2126 ± 0.3586. 2.48. 0.123. FC. 2.1417 ± 0.3752. 2.2526 ± 0.3096. 3.452. 0.071. C. 2.0600 ± 0.3911. 2.1479 ± 0.2867. 2.832. 0.1. CP. 2.0378 ± 0.4382. 2.1119 ± 0.3085. 1.906. 0.175. P. 2.0112 ± 0.5001. 2.0370 ± 0.3336. 0.675. 0.416. O. 1.6575 ± 0.6816. 1.6444 ± 0.6368. 0.087. 0.77. 20. Central.

(30) 2. 4-3. Alpha. (Ln V2). ADHD. Normal. F. p. F. 1.5339 ± 0.4522. 1.6975 ± 0.4506. 1.511. 0.226. FC. 1.6687 ± 0.4670. 1.8922 ± 0.4319. 2.791. 0.103. C. 1.8711 ± 0.5003. 2.1536 ± 0.4129. 4.578. 0.039*. CP. 1.9380 ± 0.5364. 2.2644 ± 0.5134. 4.471. 0.041*. P. 2.0903 ± 0.6046. 2.3474 ± 0.6196. 2.105. 0.155. O. 2.1589 ± 0.8685. 2.3845 ± 1.0826. 0.459. 0.502. 3. 4-4. Beta. (Ln V2). ADHD. Normal. F. p. -0.0546 ±0.4594. -0.1152 ± 0.3973. 0.195. 0.661. FC. -0.1442 ± 0.4974 -0.1774 ± 0.3882. 0.156. 0.695. C. -0.2464 ± 0.4020 -0.2183 ± 0.3589. 0.016. 0.9. CP. -0.2407 ± 0.4061 -0.1878 ± 0.3585. 0.099. 0.755. P. -0.2109 ± 0.3941 -0.1329 ± 0.3767. 0.27. 0.606. O. -0.0968 ± 0.3986 -0.0737 ± 0.4376. 0.013. 0.91. F. 4. 4-5. Theta/Alpha ADHD. Normal. F. p. F. 1.9010 ±0.6080. 1.8465 ± 0.7573. 0.055. 0.816. FC. 1.7136 ± 0.5731. 1.5998 ± 0.6503. 0.026. 0.872. C. 1.3449 ± 0.5470. 1.1179 ± 0.4701. 1.115. 0.298. CP. 1.2359 ± 0.5719. 0.9801 ± 0.5208. 1.217. 0.277. P. 1.0865 ± 0.6223. 0.9062 ± 0.7250. 0.265. 0.609. O. 0.7639 ± 0.5044. 0.6656 ± 0.6907. 0.41. 0.841. 21.

(31) 5. 4-6. Theta/Beta ADHD. Normal. F. p. 9.6047 ± 3.6270. 11.4558 ± 5.4779. 3.807. 0.058. FC. 10.8829 ± 4.8722 12.5084 ± 5.7475. 3.198. 0.081. C. 11.0772 ± 5.2687 11.7212 ± 5.3423. 1.138. 0.293. CP. 10.8932 ± 5.4175 10.9393 ± 5.1584. 0.529. 0.471. P. 10.4825 ± 5.7078. 9.8003 ± 5.0669. 0.039. 0.845. O. 7.7016 ± 5.7664. 6.4270 ± 3.630. 0.237. 0.629. F. 22.

(32) 150. 74. 100. 73. 97. 85.33 85.65. 157. 153.56. 150.53 92.67 RPE 13.97. Theta F(1, 18)=4.954, p=.039,η2=.216. Frontal (. 4-2) F(1, 18)=2.222, p=.039. 4-2. 23.

(33) F(1, 18)=4.560, p=.047,η2=.202. Central (. 4-3). 4-3. Central parietal. F(1, 18)=5.690,. p=.028,η2=.240. (. 4-4) F(1, 18)=2.535, p=.021. 4-4. 24.

(34) Frontal Central. 4-7. Parietal. 4-7. Occipital. 4-7. 4-7 Wave. Theta. F. Condition. *. F. 1.056. 0.318. FC. 0.051. 0.825. C. 0.006. 0.94. CP. 0.095. 0.761. P. 1.025. 0.325. O. 0.955. 0.341. F. 1.266. 0.275. FC. 2.155. 0.159. C. 0.201. 0.659. 0.3. 0.591. P. 0.231. 0.636. O. 0.305. 0.588. F. 4.954. 0.039*. FC. 3.169. 0.092. C. 4.56. 0.047*. 5.69. 0.028*. P. 0.862. 0.365. O. 1.587. 0.224. CP. Condition CP. 25.

(35) Alpha F(1, 18)=8.014, p=.011,η2=.308. Central parietal. F(1, 18)=5.394, p=.032,η2=.231. Parietal. Frontal. 4-8. Frontal Central. 4-8. Central. 4-8. Occipital. 4-8 4-8 Wave. Alpha. F. Condition. *. F. 0.414. 0.528. FC. 0.157. 0.697. C. 1.115. 0.305. CP. 2.922. 0.105. P. 2.03. 0.171. O. 0.706. 0.412. F. 0.208. 0.654. FC. 1.366. 0.258. C. 3.328. 0.085. CP. 8.014. 0.011*. P. 5.394. 0.032*. O. 1.167. 0.294. F. 0.232. 0.636. FC. 0.577. 0.457. C. 0.176. 0.68. 0.041. 0.842. P. 0.512. 0.483. O. 2.126. 0.162. Condition CP. 26.

(36) Beta F(1, 18)=5.262, p=.034,η2=.226. Frontal (. 4-5) F(1, 18)=2.423, p=.026 F(1,. 18)=3.548,. p=.002. 4-5. Frontal Central. 4-9. Central. 4-9. Central parietal. 4-9. Parietal. 4-9. Occipital. 4-9. 27.

(37) 4-9 Wave. Beta. F. Condition. *. F. 5.262. 0.034*. FC. 0.115. 0.738. C. 0.17. 0.685. CP. 0.803. 0.382. P. 0.74. 0.401. O. 0.006. 0.942. F. 1.853. 0.19. FC. 0.026. 0.873. C. 1.295. 0.27. CP. 2.499. 0.131. P. 2.767. 0.114. O. 0.376. 0.548. F. 0.925. 0.349. FC. 0.099. 0.757. C. 0.096. 0.76. 0.422. 0.524. P. 0.003. 0.96. O. 2.25. 0.151. Condition CP. Theta/Alpha F(1, 18)=4.765, p=.043,η2=.209. Central parietal Central parietal. F(1, 18)=4.115,. p=.058,η2=.186. (. 4-6). F(1, 18)= 3.293, p=.004 F(1, 18)=2.798,. p=.012. 28.

(38) 4-6. 29.

(39) Frontal. 4-10. Frontal Central. 4-10. Central. 4-10. Parietal. 4-10. Occipital. 4-10. Wave. TA. F. Condition. *. F. 0.645. 0.432. FC. 0.251. 0.622. C. 0.18. 0.677. CP. 1.191. 0.29. P. 0.311. 0.584. O. 0.285. 0.6. F. 0.008. 0.929. FC. 0.186. 0.671. C. 1.846. 0.191. CP. 4.765. 0.043*. P. 0.562. 0.463. O. 0.971. 0.338. F. 2.235. 0.152. FC. 0.988. 0.334. C. 2.045. 0.17. 4.115. 0.058*. P. 0.477. 0.498. O. 0.558. 0.465. Condition CP. 4-10. 30.

(40) Theta/Beta F(1, 18)=4.739, p=.043,η2=.208. Central. F(1, 18)=5.341, p=.033,η2=.229. Central parietal Central parietal. F(1, 18)=7.819,. p=.012,η2=.303. (. 4-7). F(1, 18)= 3.697, p=.002 F(1, 18)=2.206,. p=.041 F(1, 18)=2.291, p=.034. 4-7. 31.

(41) Frontal. 4-11. Frontal Central. 4-11. Parietal. 4-11. Occipital. 4-11 Wave. TB. F. Condition. *. F. 1.393. 0.253. FC. 0.023. 0.881. C. 0.084. 0.775. CP. 0.833. 0.373. P. 0.66. 0.427. O. 0.65. 0.431. F. 0.128. 0.725. FC. 3.903. 0.064. C. 4.739. 0.043*. CP. 5.341. 0.033*. P. 0. 1. O. 1.019. 0.326. F. 0.646. 0.432. FC. 2.241. 0.152. C. 4.231. 0.054*. 7.819. 0.012*. P. 0.015. 0.904. O. 0.664. 0.426. Condition CP. 4-11. 32.

(42) theta theta/Beta TB. alpha. theta/Alpha TA. beta theta. TA. TB. alpha. beta. Alpha. Central. Central parietal Barry et al.,. 2003. Woltering, Jung, Liu, and Tannock, 2012 Alpha. alpha. Lansbergen et al., 2011 hypoarousal. ADHD. Clarke et al., 2013. Satterfield et al., 1974. Nigg, 2005. theta TA Beta. theta 33. TB ADHD.

(43) Coutin-Churchman et al., 2003 Ogrim et al., 2012. Lansbergen. 2011. TB theta. TB. Loo et al. 2009; Swartwood et al.. 2003. 34.

(44) 85.33 85.65 153.56. 150.53. 92.67 RPE. 10% 13.97. Theta Frontal. Central. Central parietal theta 35.

(45) Clarke. 2008. Satterfield. Theta Satterfield. 1974. Matsuura. 1993. 1974 Clarke. 2008. fMRI ventral fronto-subcortical circuitry (Durston 2003; Liechti. , 2013; Shaw. ,. , 2007). Alpha Central parietal. Parietal. Alpha Alpha. Barry. 2003. alpha. Shi. 2012. Alpha. CPT. Balatoni & Detari, 2003; Castro-Alamancos, 2002. 36.

(46) Beta Frontal. Faw, 2003; Coan & Allen, 2004 Schneider et al., 2009; Ekkekakis & Pertruzzello, 1999 beta. 15-30. Schneider et. al., 2009. beta Bonnet & Arand, 2001. beta. Theta/Alpha Central parietal. TA Huang et al., 2014 van Dongen-Boomsma et al., 2010. TA. TB. 37.

(47) Theta/Beta Central. Central parietal. Frontocentral. Theta/Beta. attentional arousal Monastra, 2001; Barry et al., 2009. Shi. 2012. CPT. Theta/Beta TB. TB. 38.

(48) %. alpha. Central parietal. Parietal. Theta. Theta Alpha Theta Beta Beta. alpha. 39.

(49) %. beta. 40.

(50) 2006. , 8,35-63. 2010. ,24(2), 82-92. 2006 Swanson, Nolan, and Pelham, Version IV (SNAP-IV) ,20 (4),290-304 American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed. :DSM-IV-TR). Washington, DC: American psychiatric Association. Alvarez, J. A., Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17-42. Bailey, S. P., Hall, E. E., Folger, S. E., and Miller, P. C. (2008). Changes in EEG during graded exercise on a recumbent cycle ergometer. Journal of Sports Science and Medicine 7, 505-511. Balatoni, B., Detari L. (2003). EEG related neuronal activity in the pedunculopontine tegmental nucleus of urethane anaesthetized rats. Brain Research 959(2), 304-311. Barkley, R. A. (1990). Attention deficit hyperactivity disorder: A handbook for diagnosis and treatment. New York: The Cuildford Press. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65-94. Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical Neurophysiology, 114, 171-183. Barry, R. J., Clarke, A. R., & Johnstone, S. J., Brown, C. R., Bruggemann, J. M., van Rijbroek, I. (2009). Caffeine effects on resting-state arousal in children. International Journal of Psychophysiology, 73, 355–361. 41.

(51) Bonnet, M. H., & Arand D. L. (2001). Impact of activity and arousal upon spectral EEG parameters. Physiology & Behavior, 74, 291–8. Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., et al. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry, 46, 94–111. doi:10.1111/j.1469-7610.2004.00337.x Bruder, G. E., Bansal, R., Tenke, C. E., Liu, J., Hao, X., Warner, V., ……, & Weissman, M. M. (2012). Relationship of resting EEG with anatomical MRI measures in individuals at high and low risk for depression. Human Brain Mapping, 33, 1325–1333. Brümmer, V., Schneider, S., Strüder, H. K., & Askew, C. D. (2011). Primary motor cortex activity is elevated with incremental exercise intensity. Neuroscience, 181, 150–162. Bush, G., Valera, E. M., & Seidman, L. J. (2005). Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biological Psychiatry, 57(11), 1273-1284. doi: 10.1016/j.biopsych.2005.01.034 Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Reports, 100(2), 126-131. Castro-Alamancos, M. A. (2002). Role of thalamocortical sensory suppression during arousal: Focusing sensory inputs in neo-cortex. Journal of Neuroscience, 22, 9651-9655. Chang, Y. K., Liu S., Yu H. H., Lee, Y. H. (2012). Effect of Acute Exercise on Executive Function in Children with Attention Deficit Hyperactivity Disorder. Archives of Clinical Neuropsychology, 27, 225–237. Clarke, A.R., Barry, R.J., McCarthy, R., Selikowitz, M., Johnstone, S.J. (2008). The effects of imipramine hydrochloride on the EEG of children with attention-deficit/hyperactivity disorder. International Journal of Psychophysiology, 68, 186–192. Clarke, A.R., Barry, R.J., Dupuy, F. E., McCarthy, R., Selikowitz, M., Johnstone, S.J. (2013). Excess beta activity in the EEG of children with attention-deficit/hyperactivity disorder: A disorder of arousal? International Journal of Psychophysiology, 89, 314-319. 42.

(52) Coan, J. A., Allen, J. J. (2004) Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology 67, 7–49. Cotman, C. W., & Berchtold, N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25(6), 295-301. doi: S0166223602021434 Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464-472. Coutin-Churchman, P., Anez, Y., Uzcategui, M., Alvarez, L., Vergara, F., Mendez, L., Fleitas, R. (2003). Quantitative spectral analysis of EEG in psychiatry revisited: drawing signs out of numbers in a clinical setting. Clinical Neurophysiology, 114, 2294-2306. Doyle, A. E., Willcutt, E. G., Seidman, L. J., Biederman, J., Chouinard, V. A., Silva, J., Faraone, S. V. (2005). Attention-deficit/hyperactivity disorder endophenotypes. Biological Psychiatry, 1;57(11), 1324-35. Ekkekakis, P., Petruzzello, S. J. (1999). Acute aerobic exercise and affect: current status, problems and prospects regarding dose–response. Sports Medicine28, 337–74. Endres, M., Gertz, K., Lindauer, U., Katchanov, J., Schultze, J., Schrock, H., . . . Laufs, U. (2003). Mechanisms of stroke protection by physical activity. Annals of Neurology, 54(5), 582-590. doi: 10.1002/ana.10722 Faw, B. (2003). Pre-frontal executive committee for perception, working memory, attention, long-term memory, motor control, and thinking: a tutorial review. Consciousness Cognition 12, 83–139. Foley, T. E., Fleshner, M. (2008). Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Medicine, 10(2), 67-80. doi: 10.1007/s12017-008-8032-3. Fulk, L. J., Stock, H. S., Lynn, A., Marshall, J., Wilson, M. A., & Hand, G. A. (2004). Chronic physical exercise reduces anxiety-like behavior in rats. International Journal of Sports Medicine 25(1), 78-82. doi: 10.1055/s-2003-45235. 43.

(53) Finnigan, S., & Robertson, I. H. (2011). Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology, 48, 1083-1087. Gapin, J., & Etnier, J. L. (2010). The relationship between physical activity and executive function performance in children with attention-deficit hyperactivity disorder. Journal of sport & exercise psychology, 32(6), 753-763. Gilger, J. W., Pennington, B. F., & DeFries, J. C. (1992). A twin study of the etiology of comorbidity: attention-deficit hyperactivity disorder and dyslexia. Journal of the American Academy of Child and Adolescent Psychiatry, 31(2), 343-348. doi: 10.1097/00004583-199203000-00024 Gómez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R., & Edgerton, V. R. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiology, 88, 2187-2195. Gioia, G. A., Isquith, P. K., & Guy, S. C. (2001). Assessment of executive functions in children with neurological impairment. In R. J. Simeonsson, & S. L. Rosenthal (Eds.), Psychological and developmental assessment: Children with disabilities and chronic conditions. (pp. 317-356). New York, NY, US: Guilford Press. Retrieved from www.csa.com Hall, E. E., Ekkekakis, P., & Petruzzello, S. J. (2010). Predicting affective responses to exercise using resting EEG frontal asymmetry: Does intensity matter? Biological Psychology, 83, 201–206. Halperin, J. M., Healey, D. M. (2011). The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: can we alter the developmental trajectory of ADHD? Neuroscience Biobehavior Review, 35(3), 621-34. doi: 10.1016/j.neubiorev.2010.07.006. Hermens, D. F., Soei, E. X., Clarke, S. D., Kohn, M. R., Gordon, E., & Williams, L. M. (2005) Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder. Pediatric Neurology, 32, 248-256. Huang, C. J., Huang, C. W., Tsai, Y. J., Tsai, C. L., Chang, Y. K., & Hung, T. M. (2014). A preliminary Examination of Aerobic Exercise Effects on Resting EEG in Children. 44.

(54) with ADHD. Journal of Attention Disorders. first published on October 30, 2014 doi:10.1177/1087054714554611 Lansbergen, M. M., Arns, M., van Dongen-Boomsma, M., Spronk, D., & Buitelaar, J. K. (2011). The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 47-52. Lardon, M. T., & Polich, J. (1996). EEG changes from long-term physical exercise. Biological Psychology, 44, 19-30. Lee, T. W., Y. Yu , Chen, M. C., Chen, T. J. (2011). Cortical mechanisms of the symptomatology in major depressive disorder: A resting EEG study. Journal of Affective Disorders, 131, 243–250. Liechti, M. D., Valko, L., Müller, U. C., Döhnert, M., Drechsler, R., Steinhausen, H. C., Brandeis, D. (2013). Diagnostic Value of Resting Electroencephalogram in Attention-Deficit/Hyperactivity Disorder Across the Lifespan. Brain Topography, 26, 135-151. Loo, S.K., Hale, T.S., Macion, J., Hanada, G., McGough, J.J., McCracken, J.T., Smalley, S.L. (2009). Cortical activity patterns in ADHD during arousal, activation and sustained attention. Neuropsychologia, 47(10), 1033-1040. Loo S. K. & Makeig, S. (2012). Clinical utility of EEG in attention-deficit/hyperactivity disorder: A research update. Neurotherapeutics, 9, 569-587. doi: 10.1007/s13311-012-0131-z Massar, S. A., Kenemans, J. L., Schutter, D. J. (in press). Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment? International Journal of Psychophysiology. McMorris, T., Collard, K., Corbett, J., Dicks, M., & Swain, J. P. (2008). A test of the catecholamines hypothesis for an acute exercise-cognition interaction. Pharmacology Biochemistry and Behavior, 89, 106-115.. 45.

(55) McMorris, T.,Davranche, K., Jones, G., Hall, B., Corbett, J., Minter, C. (2009). Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. International Journal of Psychophysiology, 73, 334–340. Medina, J. A., Netto, T. L., Muszkat, M., Medina, A. C., Botter, D., Orbetelli, R., . . .Miranda, M. C. (2010). Exercise impact on sustained attention of ADHD children, methylphenidate effects. ADHD Attention Deficit and Hyperactivity Disorders, 2(1), 49-58. doi: 10.1007/s12402-009-0018-y Middleton, F. A., Strick, P. L. (2002). Basal-ganglia 'projections' to the prefrontal cortex of the primate. Cerebral Cortex, 12(9), 926-35. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49-100. Monastra, V. J., Lubar, J. F., & Linden, M. (2001). The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: Reliability and valid- ity studies. Neuropsychology, 15(1), 136–144. Monastra, V. J. (2008). Quantitative electroencephalography and attention-deficit/ hyperactivity disorder: Implications for clinical practice. Current Psychiatry Reports, 10, 432-438. Moraes, H., Ferreira, C., Deslandes, A., Cagy, M., Pompeu, F., Ribeiro, P., Piedade R. (2007). Beta and alpha electroencephalographic activety changed after acute exercise. Arquivos Neuro-Psiquiatr, 65, 637-641 Moscovitch, D. A., Santesso, D. L., Miskovic, V., McCabe, R. E., Antony, M. M., Schmidt, L. A. (2011). Frontal EEG asymmetry and symptom response to cognitive behavioral therapy in patients with social anxiety disorder. Biological Psychology, 87, 379–385. Nigg, J. T. (2005). Neuropsychologic theory and findings in attention-deficit/hyperactivity disorder: the state of the field and salient challenges for the coming decade. Biological Psychiatry, 57, 1424–35.. 46.

(56) Ogrim, G., Kropotov, J., Hestad, K. (2012). The QEEG TBR in ADHD and normal controls: Sensitivity, specificity and behavioral correlates. Psychiatry Research, 198 (3), 482-488. Pennington, B. F. (2002). The development of psychopathology. New York: Guilford Press. Petzinger, G. M., Walsh, J. P., Akopian, G., Hogg, E., Abernathy, A., Arevalo, P., Turnquist, P., Vucković, M., Fisher, B. E., Togasaki, D. M., Jakowec, M. W. (2007).Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience, 27(20), 5291-300. Pliszka, S. R. (2005). The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biological Psychiatry, 1;57(11), 1385-90. Pontifex, M. B., Saliba, B. J., Raine, L. B., Picchietti, D. L., & Hillman, C. H. (2013). Exercise improves behavioral, neurocognitive, and scholastic performance in children with ADHD. Journal of Pediatrics, 162(3), 543-51. Rowe, D. L., Robinson, P. A., Lazzaro, I. L., Powles, R. C., Gordon, E., & Williams, L. M. (2005). Biophysical modeling of tonic cortical electrical activity in attention deficit hyperactivity disorder. International Journal of Neuroscience, 115, 1273-1305. Satterfield, J. H., Cantwell, D. P., Satterfield, B. T. (1974). Pathophysiology of the hyperactive child syndrome. Archives of General Psychiatry, 31, 839-844. Satterfield, J. H., Cantwell, D. P., Saul, R. E., Lesser, L. I., Podosin, R. L. (1973). Response to stimulant drug treatment in hyperactive children: prediction from EEG and neurological findings. Journal of autism and childhood schizophrenia, 3, 6-48. Schneider, S., Brümmer, V., Abel, T., Askew, C. D., & Strüder, H. K. (2009). Changes in brain cortical activity measured by EEG are related to individual exercise preferences. Physiology & Behavior ,98, 447–452. Schneider, S., Mierau, A., Diehl, J., Askew, C. D., Strüder H. K. (2009). EEG activity and mood in health orientated runners after different exercise intensities. Physiology Behavior 96, 706–16.. 47.

(57) Seidman, L. J., Valera, E. M., Makris, N. (2005). Structural brain imaging of attention-deficit/hyperactivity disorder. Biological Psychiatry, 1;57(11), 1263-72. Semrud-Clikeman, M., Pliszka, S., Liotti, M. (2008). Executive functioning in children with attention-deficit/hyperactivity disorder: combined type with and without a stimulant medication history. Neuropsychology. 22(3), 329-40. doi: 10.1037/0894-4105.22.3.329. Shi, T., Li, X., Song, J., Zhao, N., Sun, C., …… ,, Tomoda, A. (2012). EEG characteristics and visual cognitive function of children with attention deficit hyperactivity disorder (ADHD). Brain & Development, 34, 806–811. Sibley, B.A., Etnier, J.L. (2003). The relationship between physical activity and cognition in children: a meta-analysis. Pediatric Exercise Science, 15, 243–256. Smalley, S. L. (1997). Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. The American Journal of Human Genetics, 60(6), 1276-1282. doi: 10.1086/515485 Smith, A. L., Hoza, B., Linnea, K., McQuade, J. D., Tomb, M., Vaughn, A. J., . . . Hook, H. (2013). Pilot physical activity intervention reduces severity of ADHD symptoms in young children. Journal of Attention Disorders, 17, 70-82. Snyder, S. M. & Hall, J. R. (2006). A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. Journal of Clinical Neurophysiology, 23, 440-455. Sumich, A., Matsudaira, T., Gow, R. V., Ibrahimovic, A., Ghebremeskel, K., Crawford, M., & Taylor, E. (2009). Resting state electroencephalographic correlates with red cell long-chain fatty acids, memory performance and age in adolescent boys with attention deficit hyperactivity disorder. Neuropharmacology, 57, 708-714. Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., . . . Greenough, W. T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117(4), 1037-1046. doi: S0306452202006644. 48.

(58) Swartwood, J. N., Swartwood, M. O., Lubar, J. F., Timmermann, D. L. (2003). EEG differences in ADHD-combined type during baseline and cognitive tasks. Pediatric Neurology, 28, 199–204. Tamm, L. (2009). In R. S. Larry (Ed.), Attention deficit hyperactivity disorder. Encyclopedia of Neuroscience Oxford: Academic Press. Tantillo, M., Kesick, C. M., Hynd, G. W., & Dishman, R. K. (2002). The effects of exercise on children with attention-deficit hyperactivity disorder. Medicine & Science in Sports & Exercise, 34(2), 203-212. Tenke, C. E., Kayser, J., Miller, L., Warner, V., Wickramaratne, P., Weissman, M. M., & Bruder, G. E. (2013). Neuronal generators of posterior EEG alpha reflect individual differences in prioritizing personal spirituality. Biological Psychology, 94, 426–432. van Dongen-Boomsma, M., Lansbergen, M. M., Bekker E. M., Sandra Kooij, J. J., van der Molen, M., Kenemans, J. L., & Buitelaar, J. K. (2010). Relation between resting EEG to cognitive performance and clinical symptoms in adults with attention deficit/hyperactivity disorder. Neuroscience Letters, 469, 102-106. Wigal, S. B., Nemet, D., Swanson, J. M., Regino, R., Trampush, J., Ziegler, M. G., & Cooper, D. M. (2003). Catecholamine response to exercise in children with attention deficit hyperactivity disorder. Pediatric Research, 53(5), 756-761. doi: 10.1203/01.PDR.0000061750.71168.23 Woltering, S., Jung, S., Liu, Z., & Tannock, R. (2012). Resting state EEG oscillatory power differences in ADHD college students and their peers. Behavioral and Brain Functions, 8, Article 60.. 49.

(59) ID. :. :. :. :. □ (. ). (. : :. ( (. □. ( : (. ). ※. 50. ):. ): ):. □. (. : ). ). □.

(60) ?. YES. NO. □. 1.. □. □. □. □. □. □. □. □. □. □. □. ? 2.. ?. 3. ? 4. ? 5.. ?. 6.. ?. 7.. ?. NO. 51. □. □. □. □.

(61) !. 0911-890069. ※. 52.

(62) 1. 25 8-12. (1).. (2).. (3).. 2. 1. 2. 3.. 53.

(63) (1). 500. (2). (3). (4) (. ). (5). (6) 54.

(64) (7) 0911-890069. sandwich06@hotmail.com. 100. 55.

(65) (. ). (. ) (. (. ). ) *( ). (. ). _______ _______ !. 56. __________ ________.

(66)

參考文獻

相關文件

SPO has high fatty acids, therefor it has to carry out the acid catalyzed esterification to convert of the fatty acids in SPO to biodiesel first, and then used the

近年來受高等教育普及化影響,教育養成年限拉長,年輕勞動力初次進入勞動市場

Attention Deficit/Hyperactivity Disorder (AD/HD)(注意力缺陷/過動症) Auditory Processing Disorder(聽知覺處理歷程異常).

魚油 + 運動 魚油 紅花油 豬油 對生理的影響 左心室收縮壓、.

With learning interests as predictors, the increases in mathematics achievement were greater for third- graders and girls than for fourth-graders and boys; growth in learning

Teaching study skills and strategies – to students with learning disabilities, attention deficit disorders, or special needs, 2 nd Ed. London: Allyn

近年來受高等教育普及化影響,教育養成年限拉長,年輕勞動力初次進入勞動市場

Solution: pay attention on the partial input object each time Problem: larger memory implies more parameters in RNN. Solution: long-term memory increases memory size without