• 沒有找到結果。

第五章 結論與建議

第二節 建議

doi:10.6342/NTU201701458

135

多,故規劃此區域的站點時應考量假日之遊憩人潮,設置規模適中的站點,且在 假日時仍須安排車輛調派人員進行車輛與車位數的控管作業。

第二節 建議

在建議的部分,由於本研究在研究資料的取得、研究方法的設計以及研究區 域的特性等,礙於時間與經費的考量上具有一些研究上的限制,因此提出後續研 究運用本研究之建議,並一同提出後續研究可繼續延伸之處,詳細內容如以下說 明。

一、 研究資料取得不易

本研究使用了 2015 年 7 月至 12 月的雙北市公共自行車之逐筆租借資料,其 中礙於資料申請問題僅申請到此後半年之資料,缺少上半年之資料,造成冬天與 春天之公共自行車使用行為及其影響關係較難在本研究中直接說明,然而本研究 有從中控制住降雨變數,而在氣溫部分由於雙北市之氣候特性,全年皆屬於溫暖 的氣候,故氣溫對本研究的影響關係較少,本研究之成果仍有足夠的可信度。另 外,由於 7 月與 8 月是雙北市學生之暑假,故從中可能產生出與平常日相異的使 用型態,本研究雖然有針對國定假日與平日分別進行不同影響關係的探討,但在 暑假部分則無法完全排除,故透過逐月平均的處理方式來降低此兩個月對於模式 結果的偏誤。最後則是變數資料申請不易,在年度與月份上精準符合,而本研究 採用條件最相似之其他時間點的資料進行替代,進而將誤差減少至最小。

二、 動態時間扭曲法(DTW)計算特性

本研究使用 DTW 法取代歐幾里斯距離進行樣本間距離的計算,此方法適用 於時間序列的判讀,然而因其計算特性,造成波形相似但發生位置相異的兩時間

doi:10.6342/NTU201701458

136

序列容易被判讀成相似的序列,進而產生偏誤,而本研究從中觀察經由 DTW 法 計算過後之分群結果,發現此現象較少,呈現良好之分群結果,但若是未來後續 研究欲採用此分群方法,則須檢查是否有此現象產生,並適時進行校正以確保分 群結果無產生偏誤。

三、 時空型態分析方法

本研究之時空型態分析方法承襲至 Froehlich et al. (2009),透過使用量時間 序列的建立,並從中加入空間距離的特性進行 DTW 距離的計算,而後利用階層 式分群演算法進行分群,從中梳理出不同的公共自行車使用型態,此分群方法試 圖將空間面向的觀點加入至舊有探討使用量之文獻中,此乃創新之一,然而就時 空型態分群效果而言,在使用量的分群部分表現較好,不同群表現出不同的使用 型態,然而在空間部分的表現則較差,大致均呈現凌晨移動距離長而白天移動距 離短的特性,可能是因為在使用者本身在移動距離的使用型態上差異較小所導致,

礙於公共自行車系統特性,使用者須考量到租還車的便利性以及本身體力負荷範 圍,故較容易呈現短距離的移動,造成分群效果較不顯著的現象,故建議後續研 究可從旅次的起迄流量下手,分析使用者租用公共自行車後容易往哪裡去,進行 更為深入的分析探討。另一方面,由於本研究之分群結果互有各自獨特的公共自 行車使用時空型態,較難以從中歸納統整出確切的使用型態,故僅以 ABCD 等 代號進行時空型態的命名,未來研究若能從分群結果中歸納出確切的使用型態,

則建議加以命名,更具解釋效果。

doi:10.6342/NTU201701458

137

參考文獻

白詩榮 (2013)。臺北公共自行車使用行為特性分析與友善環境建構之研究。國 立政治大學地政學系碩士論文。

余書玫 (2009)。公共自行車租借系統選擇行為之研究。國立交通大學交通運輸 研究所碩士論文。

鍾智林、簡佑勳 (2014) 公共自行車時空分析法之構建與營運策略改善-以臺北 微笑自行車為例,都市交通,29 (1):1-10。

交通部 (2015) 民眾日常使用運具狀況調查。http://data.gov.tw/node/6248 (擷取 日期:2015/12/23)

交通部運輸研究所 (2015) 運輸部門年度排放清冊推估資料庫-二氧化碳排放 量。http://data.gov.tw/node/8331 (擷取日期:2015/12/23)

經濟部能源局 (2015) 我國燃料燃燒二氧化碳排放統計。

http://verity.erl.itri.org.tw/EIGIC/index.php?option=com_content&view=article

&id=45&Itemid=29 (擷取日期:2015/12/23)

臺北市政府交通局 (2015) 臺北市市區自行車設施及公共自行車租賃情形。

http://www.dot.gov.taipei/public/Data/561010161171.pdf (擷取日期:

2016/1/12)

Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J. B., & Fleury, E. (2011) Shared bicycles in a city: A signal processing and data analysis perspective.

Advances in Complex Systems, 14(03): 415-438.

Briant, D., & Kut, A. (2007) ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data and Knowledge Engineering, 60: 208-221.

Caggiani, L., & Ottomanelli, M. (2012) A modular soft computing based method for vehicles repositioning in bike-sharing systems. Procedia-Social and Behavioral Sciences, 54: 675-684.

doi:10.6342/NTU201701458

138

Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3):

199-219.

Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., & Neiman, A. (2009).

Influences of built environments on walking and cycling: Lessons from Bogotá.

International Journal of Sustainable Transportation, 3(4): 203-226.

Corcoran, J., Li, T., Rohde, D., Charles-Edwards, E., & Mateo-Babiano, D. (2014) Spatio-temporal patterns of a public bicycle sharing program: The effect of weather and calendar events. Journal of Transport Geography, 41: 292-305.

Crane, R. (2000). The influence of urban form on travel: An interpretive review.

Journal of Planning Literature, 15(1): 3-23.

Daddio, D. W. (2012). Maximizing bicycle sharing: An empirical analysis of capital bikeshare usage. Ph.D. dissertation, Department of City and Regional Planning, University of North Carolina at Chapel Hill.

Delmelle, E. M., & Delmelle, E. C. (2012). Exploring spatio-temporal commuting patterns in a university environment. Transport Policy, 21: 1-9.

Etienne, C., & Latifa, O. (2014). Model-based count series clustering for bike sharing system usage mining: A case study with the Vélib’ system of Paris. ACM Transactions on Intelligent Systems and Technology, 5(3): 39-65.

Ewing, R., & Cervero, R. (2001). Travel and the built environment: A synthesis.

Transportation Research Record: Journal of the Transportation Research Board, 1780: 87-114.

Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014) How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41: 306-314.

doi:10.6342/NTU201701458

139

Froehlich, J., Neumann J., & Oliver N. (2009). Sensing and predicting the pulse of the city through shared bicycling. International Joint Conference on Artificial Intelligence. 9: 1420-1426.

Handy, S., Cao, X., & Mokhtarian, P. (2005). Correlation or causality between the built environment and travel behavior? Evidence from Northern California.

Transportation Research Part D: Transport and Environment, 10(6): 427-444.

Heinen, E., van Wee, B., & Maat, K. (2010). Commuting by bicycle: An overview of the literature. Transport Reviews, 30(1): 59-96.

Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., & Banchs, R. (2010). Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system. Pervasive and Mobile Computing, 6(4): 455-466.

Maurer, L. K. (2011). Suitability study for a bicycle sharing program in Sacramento, California. Ph.D. dissertation. Department of City and Regional Planning, University of North Carolina at Chapel Hill.

Midgley, P. (2009) The role of smart bike-sharing systems in urban mobility. Journeys, 2: 23-31.

Moudon, A. V., Lee, C., Cheadle, A. D., Collier, C. W., Johnson, D., Schmid, T. L., &

Weather, R. D. (2005). Cycling and the built environment: A US perspective.

Transportation Research Part D: Transport and Environment, 10(3): 245-261.

Novák, J., & Sýkora, L. (2007). A city in motion: Time‐space activity and mobility patterns of suburban inhabitants and the structuration of the spatial organization of the Prague metropolitan area. Geografiska Annaler: Series B, Human Geography, 89(2): 147-168.

O’Brien, O., Cheshire, J., & Batty, M. (2014). Mining bicycle sharing data for generating insights into sustainable transport systems. Journal of Transport Geography, 34: 262-273.

doi:10.6342/NTU201701458

140

Parkes, S. D., Marsden, G., Shaheen, S. A., & Cohen, A. P. (2013) Understanding the diffusion of public bikesharing systems: Evidence from Europe and North America. Journal of Transport Geography, 31: 94-103.

Rixey, R. (2013). Station-level forecasting of bikesharing ridership: Station network effects in three US systems. Transportation Research Record: Journal of the Transportation Research Board, 2387: 46-55.

Roof, K., & Oleru, N. (2008). Public health: Seattle and King County's push for the built environment. Journal of Environmental Health, 71(1): 24-27.

Schlich, R., Schönfelder, S., Hanson, S., & Axhausen, K. W. (2004). Structures of leisure travel: Temporal and spatial variability. Transport Reviews, 24(2): 219-237.

Shaheen, S., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia: Past, present, and future. Transportation Research Record: Journal of the Transportation Research Board, 2143: 159-167.

Shaheen, S. A., Martin, E. W., Chan, N. D., & Cohen, A. P. (2014). Public bikesharing in North America during a period of rapid expansion: Understanding business models, industry trends and user impacts. MTI Report: 12-29.

Titze, S., Stronegger, W. J., Janschitz, S., & Oja, P. (2008). Association of built-environment, social-environment and personal factors with bicycling as a mode of transportation among Austrian city dwellers. Preventive Medicine, 47(3): 252-259.

Vogel, M., Hamon, R., Lozenguez, G., Merchez, L., Abry, P., Barnier, J., Borgnat, P., Flandrin, P., Mallon, I., & Robardet, C. (2014). From bicycle sharing system movements to users: A typology of Vélo’v cyclists in Lyon based on large-scale behavioural dataset. Journal of Transport Geography, 41: 280-291.

doi:10.6342/NTU201701458

141

Wang, M., Wang, A. and Li A. (2006). Mining spatial-temporal clusters from geo-databases. Advanced Data Mining and Applications, Berlin: Springer Berlin Heidelberg: 263-270.

Wang, X., Lindsey, G., Schoner, J. E., & Harrison, A. (2015). Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations.

Journal of Urban Planning and Development: 142(1).

Winters, M., Teschke, K., Grant, M., Setton, E. & Brauer, M. (2010). How far out of the way will we travel? Built environment influences on route selection for bicycle and car travel. Transportation Research Record: Journal of the Transportation Research Board, 2190, 1-10.

Zhao, P. (2014). The impact of the built environment on individual workers’ commuting behavior in Beijing. International Journal of Sustainable Transportation, 7(5):

389-415.

Zhao, J., Wang, J., & Deng, W. (2015). Exploring bikesharing travel time and trip chain by gender and day of the week. Transportation Research Part C: Emerging Technologies, 58: 251-264.

Zhou, X. (2015). Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in Chicago. PloS One: 10(10): 1-20.