• 沒有找到結果。

第 6 章 總結與未來展望

6.2 未來展望

 霍爾感測器狀態估測

由於馬達內部磁鐵的外型影響,使得馬達旋轉時,線性霍爾感測器的輸出訊 號包含大量諧波成分。本研究中已提出一套方法來消除主要的諧波影響,獲得較 精確的狀態估測。但若考慮極端情況,三顆感測器間安裝位置不準將造成訊號間 的相位誤差,而內部磁鐵間尺寸不一會造成訊號間的幅值誤差,此兩種因素會造 成估測狀態誤差較大,將來的研究可針對此問題設計補償算法。另一方向則是將 霍爾感測器安裝在馬達外,並將額外的磁鐵連結於輪子轉軸上,形成類似編碼器 的外接模組。透過適當的設計可避免前述的大部分問題,達到較為簡單且精確的 狀態估測,且在維修與感測器的更換上更為便利。

 動力輔助控制

本文中之無感測器動力輔助控制目前僅針對輪椅直行狀態出力輔助,且由於 缺乏包含使用者的整車模型使其效果有一定限制。若能對車體模型做較精確的線 下或線上估測則可達到更準確的輔助。在人力輸入辨識的部分,本文僅針對加速 動作,故在停止時,使用者停住輪椅的動作可能被視為路面阻力而被系統抑制,

使輪椅急停時會耗費較大力氣,故將來可設計更智慧化的算法來推論使用者的意 圖,並更精確的從外加轉矩中解耦出人力輸入。另外針對不同地形的力矩補償及 雙輪輔助力矩的配合等都是將來可進一步探討的方向。

參考文獻

[1] X. Zhang and W. Zhang, "An improved rotor position estimation in PMSM with low-resolution hall-effect sensors," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, 2014, pp. 2722-2727.

[2] S. Zaim, J. P. Martin, B. Nahid-Mobarakeh and F. Meibody-Tabar, "High performance low cost control of a permanent magnet wheel motor using a hall effect position sensor," 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, 2011, pp. 1-6.

[3] Z. M. Dalala, Younghoon Cho and Jih-Sheng Lai, "Enhanced vector tracking observer for rotor position estimation for PMSM drives with low resolution Hall-Effect position sensors," 2013 International Electric Machines & Drives Conference, Chicago, IL, 2013, pp. 484-491.

[4] Yong Zhao, Wenxin Huang, Jufeng Yang, Feifei Bu and Saide Liu, "A PMSM rotor position estimation with low-cost Hall-effect sensors using improved PLL," 2016 IEEE Transportation Electrification Conference and Expo, Pacific (ITEC Asia-Pacific), Busan, 2016, pp. 804-807.

[5] Q. Ni, M. Yang, J. Long and D. Xu, "Observer-based estimation improvement for servo control of PMSM with binary-type hall sensors," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 539-545.

[6] Z. Wang, K. Wang, J. Zhang, C. Liu and R. Cao, "Improved rotor position estimation for permanent magnet synchronous machines based on hall-effect sensors," 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, 2016, pp.

911-916.

[7] G. Liu, B. Chen and X. Song, "High-precision speed and position estimation based

on Hall vector frequency tracking for PMSM with bipolar Hall-effect sensors,"

in IEEE Sensors Journal, vol. 19, no. 6, pp. 2347-2355, 15 March15, 2019.

[8] S. Jung, B. Lee and K. Nam, "PMSM control based on edge field measurements by Hall sensors," 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, 2010, pp. 2002-2006.

[9] X. Song, J. Fang and B. Han, "High-precision rotor position detection for high-speed surface PMSM drive based on linear hall-effect sensors," in IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4720-4731, July 2016.

[10] A. Simpkins and E. Todorov, "Position estimation and control of compact BLDC motors based on analog linear Hall effect sensors," Proceedings of the 2010 American Control Conference, Baltimore, MD, 2010, pp. 1948-1955.

[11] J. Kim, M. Kim, K. Cho and S. Choi, "Dual sampling rate observer for motor position estimation using linear hall sensors and iterative algorithm," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, 2016, pp. 1-4.

[12] K. Ji-Won, M. Seok-Hwan and P. Byung-Gun, "On-line compensation of magnetic position sensor using recursive least square method," 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, 2015, pp. 787-792.

[13] D. Reigosa, D. Fernandez, C. Gonzalez, S. B. Lee and F. Briz, "Permanent magnet synchronous machine drive control using analog hall-effect sensors," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, pp.

3966-3971.

[14] Lu Wenchang and Ma Hongqi, "EPS control based on state feedback," 2011 International Conference on Electric Information and Control Engineering, Wuhan, 2011, pp. 2154-2157.

[15] Y. Chunfang, W. Shaohua and Z. Jinbo, "Flexible PID control design in assistance condition of automotive EPS system," 2009 International Forum on Computer Science-Technology and Applications, Chongqing, 2009, pp. 222-225.

[16] Sehoon Oh and Yoichi Hori, "Generalized discussion on design of force-sensor-less Power Assist Control," 2008 10th IEEE International Workshop on Advanced Motion Control, Trento, 2008, pp. 492-497.

[17] S. Oh, K. Kong and Y. Hori, "Design and analysis of force-sensor-less power-assist control," in IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 985-993, Feb. 2014.

[18] S. Hara, K. Yuchi, T. Yoshiura and Y. Yamada, "Power assist controller design taking account of unintentional input force," 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, 2013, pp. 1838-1843.

[19] V. Salvucci, S. Oh and Y. Hori, "Force sensor-less power assist control for low friction systems," 2010 11th IEEE International Workshop on Advanced Motion Control (AMC), Nagaoka, Niigata, 2010, pp. 290-295.

[20] K. Ito, M. Ishihara and K. Inuzuka, "Force sensorless power assist controller design of transferring assist robot," 2014 World Automation Congress (WAC), Waikoloa, HI, 2014, pp. 701-706.

[21] Chao-Jen Chen, Ming-Yang Cheng and Ke-Han Su, "Observer-based impedance control and passive velocity control of power assisting devices for exercise and rehabilitation," IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, 2013, pp. 6502-6507.

[22] K. Hatada and K. Hirata, "Energy-efficient power assist control for periodic motions," Proceedings of SICE Annual Conference 2010, Taipei, 2010, pp. 2004-2009.

[23] Z. Kai and Y. Dejun, "A control approach adaptive to load and road slope for electric power assisted bicycle," 2017 36th Chinese Control Conference (CCC), Dalian, 2017, pp. 3414-3418.

[24] J. Lee, J. Jiang and Y. Sun, "Design and simulation of control systems for electric-assist bikes," 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, 2016, pp. 1736-1740.

[25] Z. Deyi, Z. Kai and Y. Dejun, "A new torque control approach for electric power assisted bicycle based on model-following control," 2017 International Conference on Information, Communication and Engineering (ICICE), Xiamen, 2017, pp. 36-39.

[26] T. Li, Q. Yang, B. Ren and X. Tu, "A torque sensor-less speed control method of electric assisted bicycle," 2018 37th Chinese Control Conference (CCC), Wuhan, 2018, pp. 3705-3709.

[27] H. Murakami, H. Seki, H. Minakata and S. Tadakuma, "Operationality improvement control of Electric power assisted wheelchair by fuzzy algorithm," 2009 IEEE International Conference on Industrial Technology, Gippsland, VIC, 2009, pp. 1-6.

[28] S. Nomura and T. Murakami, "Power assist control of electric wheelchair using equivalent jerk disturbance under slope environment," 2010 11th IEEE International Workshop on Advanced Motion Control (AMC), Nagaoka, Niigata, 2010, pp. 572-576.

[29] H. Seki and N. Tanohata, "Fuzzy Control for Electric Power-Assisted Wheelchair Driving on Disturbance Roads," in IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1624-1632, Nov.

2012.

[30] T. Shibata and T. Murakami, "power-assist control of pushing task by repulsive

compliance control in electric wheelchair," in IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 511-520, Jan. 2012.

[31] C. Ou, C. Chen and T. Chen, "Modelling and design a power assisted wheelchair used torque observer," 2010 International Symposium on Computer, Communication, Control and Automation (3CA), Tainan, 2010, pp. 63-66.

[32] S. Oh, N. Hata and Y. Hori, "Integrated motion control of a wheelchair in the longitudinal, lateral, and pitch directions," in IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1855-1862, April 2008..

[33] 林信志, 新型手輪馬達電動輪椅雙動力輪與控制策略的整合, 碩士論文, 國立 台灣大學, 台北, 2011.

[34] 丁奕元, 基於霍爾感測器之改良型轉子角度估算法應用於內藏式永磁同步馬 達之驅動控制, 碩士論文, 國立台灣大學, 台北, 2011.

[35] 陳柏叡, 運用粒子群最佳化法於手輪馬達式電動輪椅用交互耦合轉速比控制 器設計, 碩士論文, 國立台灣大學, 台北, 2013.

[36] 董紹安, 手輪馬達電動輪椅之控制系統整合策略, 碩士論文, 國立台灣大學, 台北, 2016.

[37] 施華宇, 手輪馬達電動輪椅之霍爾感測器失效控制策略, 碩士論文, 國立台灣 大學, 台北, 2017.

[38] 林怡劭, 手輪馬達電動輪椅力矩控制暨參數識別, 碩士論文, 國立台灣大學, 台北, 2017.

[39] 葉治緯, 手輪馬達電動輪椅驅動器設計與整車控制及路徑學習策略, 碩士論 文, 國立台灣大學, 台北, 2017.

[40] 莊詠諭, 手輪馬達電動輪椅馬達驅動控制器研發與驗證, 碩士論文, 國立台灣 大學, 台北, 2018.

[41] 林暉翔, 參考模式適應控制之手輪馬達電動輪椅力矩電流控制器設計與驅動,

碩士論文, 國立台灣大學, 台北, 2018.

[42] Arduino,Arduino Due,[Online].Available:

https://www.arduino.cc/en/Main/ArduinoBoardDue.

[43] Sensorless Field Oriented Control of 3-Phase Permanent Magnet Synchronous Motors , [Online].Available: http://www.ti.com/lit/an/sprabq3/sprabq3.pdf

[44] 吳建維, 手輪馬達電動輪椅之煞車與上波起步控制策略, 碩士論文, 國立台灣 大學, 台北, 2014.