• 沒有找到結果。

研究建議

在文檔中 中 華 大 學 (頁 86-99)

第五章 研究結論與建議

第三節 研究建議

一、機隊管理建議:

系統動態學發展至今已經超逾 50 年,基於本研究方法易於探討複雜的系統

動態行為,且在社會科學領域中已具有斐然之運用成效;而本論文探究之機隊 妥善率管理模式,雖已有相關作業程序與規範,然實際的修護排程仍多仰賴管 制員的專業認知與經驗,但個人的專業認知確實難以度量,也不易掌握複雜的 系統動態行為;基此,本研究藉由觀察修護排程的動態性出發,依據基本知識 和真實世界所觀察到的己知事實,依定義之研究問題與範圍,建立變數、定義 動態假說,構建系統運作之模式,再進行電腦模擬與模式基本測試以建立模式 的信度;最後進行各項模式應用實驗,探討機隊妥善率之動態規劃特性,回答 所謂 What- if 的問題。以下即列舉各項實驗模擬中所察覺之系統動態行為,或 有助於修正現有認知或思維模式。以下綜合彙整研究產生的觀點,可以提供後 續機隊管理相關作業參考運用。

第一,檢修料件齊備度是妥善率維繫的關鍵因素,按應用案例與模擬實驗 的結果,以目前修護排程與料件供補模式,並無法全然達成部頒妥善率的要求。

在案例實驗中藉由縮減在廠檢修期程的方式,以改變四級規劃建在廠檢修的因 子水準方式,觀察修護人力增加對妥善率之影響,結果發現調增修護人力雖可 提升妥善率,然增加的幅度不大;而若可縮減料件採購前置期程,意即提升料 件撥補率,則有較顯著的影響,而據以推論檢修料件的齊備度對妥善率為係的 重要性;同時,此觀點也可轉用於設施、機具的增加,對妥善率的影響層面不 大,而關鍵因素在於檢修料件的齊備度。因此,對於修護備料作為,應積極研 採先期計畫性備料,即參照預劃飛行時數資料,分別就定期性預防保養與臨機 性故障檢修,提早預判料件需求並完成申補,循補給管道辦理籌購;基此理論,

定期性的預防保養用料應可全然滿足,但對於臨機性損壞則無法全然可以預先 掌握,因受限於故障分析預判能力,以及零組件失效故障率分析之精準率亦難 以完全控制,應再檢討縮短料件採購前置期程,以加速料件獲得。

第二,料件拆移無法全然支援妥善率維繫作業。為解決後勤支援在料件不 足,轉而採行拆移的權宜方式,經納入模型修正階段實驗,察覺此措施確實有 助於妥善率的提升,但仍不如預期可以持續維持機隊妥善率在部頒標準之上;

由於拆移僅是緊急狀況之處置作為,通常係為滿足戰備需求,作為戰時料件供 補中斷應變之措施,但如運用於平時,則恐徒然衍生的檢修工時與消耗性材料 的需求,故對於平時正常維保作業,仍應回歸料件籌補之正常制度面。

第三,修正管制派遣作業模式,訂定合理部頒妥善率。研究中採變更修護 管制人員對修護排程之心智模式,取消目前對二、三級規劃件管制進廠,即機 隊產生二、三級規劃件後,若修護料件可資滿足,即安排進廠檢修,發現妥善 率與管制前的數值約略相同,然可支援之飛行時數卻獲得提升;此觀點打破目 前維繫部頒妥善率藩籬的錯誤認知,跳脫一昧追求妥善率數值的窠臼,屏除為 維持妥善率而管制飛機派遣的不當修護作為。此外,對部頒妥善率的計算方法 提出下列建議:(一)如果部頒妥善率所訂定的標準太高,修護管理部門常會為 了達成該標準值,而增加管制派遣架數,導致可訓機的架數相對減少,按研究 所見高妥善率有可能不是高戰力的真實表徵;所以,若要辦理部頒妥善率制定 作業,應綜合考量目前機隊檢修、管制、封存架數及機體時數等飛機情況,結 合檢修料件之庫儲存量、補給率等資訊,對照所需之飛行時數,採模擬的方式 計算出合理可行之妥善率,納入妥善率修訂參考運用。(二)延續前述觀點,妥 善率的計算方法不應單單僅以妥善數與飛機總數的比值(即妥善率=妥善數/

飛機總數)來計算,亦應將目前機隊內實際可訓時數(即各妥善機目前可飛時數) 檢討一併納入,整合兩種觀測數據,才能落實機隊妥善率管理的精神。

第四,結合後勤現制能力訂定飛行計畫時數。由基本模型與應用案例的實 驗發現,就支援飛行計畫而言,即使提高了飛行天數與單日飛行時數,仍僅能 達成年度飛行計畫總時數,無法全然滿足月、週、日計畫時數;因此,在飛行 時數訂定前,應該將後勤的限制因素優先納入考量,如果後勤支援無法滿足,

則必須檢討修正降低飛行時數,或研採改以模擬機等替代方案實施部分訓練項 目。飛行與修護計畫管制部門均為支援飛行任務的管制單位,但其作業目標不 盡相同,飛行計畫管制部門著重於飛行時數之達成,修護計畫管制部門偏向飛 機妥善率之維繫;依研究結果建議兩個單位在作業目標上都應做些許調整,避 免雙方溝通協調誤解而影響正常飛行任務推展。故在飛行預劃時數擬定前,須 考量後勤支援的能力限制,而飛機妥善率的訂定也應權衡料件撥補率。為了滿 足單位飛行任務達成能力,除了現有部頒妥善率的要求標準外,修護管制部門 更應隨時提供全機隊可支援飛行任務的時數資料,交由飛行部門適時檢討調正 飛行任務,才能發揮組織內相互合作與激勵的精神。

二、後續研究建議:

探討社會科學的問題,需溯源於影響內部深層的各個因子,而各因子彼此 間複雜的動態關係,與系統回饋、時間延遲效應產生的交互作用,就是管理問 題的癥結所在。一般管理者在執行規劃作業階段,常常短缺窺視問題全貌的能 力,而衍生作業預測的盲點,產生非預期之成果。而系統動態學之發展,就是 藉由系統化思維,與電腦模擬演算的功能,針對動態複雜的系統特性,深入解 析社會科學問題的結構與行為,據以強化人類心智的思考能力。

實驗模擬「縮減料件採購前置期程」與「加班執行故障飛機檢修」的方式,

以提昇妥善率與增加飛行時數,但此舉同時也必然會增加採購、人事與設施等 相關成本的支出,所以若將機隊維護成本納入模型,可增加模型的負環,藉由 平衡觀感提出各項作業的最佳解組合,強化模型的運用程度,建議納入後續研 究;此外,諸如修護人力素質、棚廠設施、機具測裝、包班儲運等與機隊妥善 率之動態行為,可一併列入考量。然而系統動態學模擬兩兩因子之間相互影響 的情形,當系統變得太大,即所涵括的因子過多,則模型將愈趨複雜,甚至失 真,後續研究者亦應掌握瞭解模型建構的要點,以建立合理可用的系統動態模 型。

參考文獻

林哲充(2000)。電爐煉軋鋼業動態營運模式之研究。未出版之碩士論文,國立 中山大學資訊管理研究所,高雄市。

孫惠民(2005)。飛機派飛與修護限制之模式探討建立-以戰轟機為例。未出版 之碩士論文,國立東華大學企業管理研究所,花蓮縣。

國防部(2004)。國軍武器系統與裝備整體後勤支援教則。台北市:國防部。

國防部軍備局(2003)。國軍主要武器系統與裝備測試評估教則。台北市:國防 部軍備局。

國防部陸軍司令部(2004)。陸軍航空裝備保修手冊。桃園縣:國防部陸軍司令 部。

國防部聯合後勤司令部(2007)。聯合後勤教則。台北市:國防部聯合後勤司令 部。

郭秀貴、任維廉、黃靖媛(2006)。應用關鍵鏈專案管理於民用航空器發動機維 修業之排程規劃。管理與系統,13(2),241-263。

鄧翠玲(2004)。以系統動態學探討軟體開發專案之動態規劃特性。未出版之碩 士論文,私立中原大學資訊管理研究所,桃園縣。

蕭瑞麟(2006)。不用數字的研究。台北市:台灣培生教育出版集團。

簡振旺(2008)。預拌廠採供應鏈管理之現況。營建資訊,301,62-70。

顏上堯、陳俊穎、袁瑞霞(2007)。航機維修廠中期修護停機排程最佳化模式之 研究。運輸學刊,19(2),121-139。

Brooks, J. L., & Wallace, M. G. (1989). Logistics support planning for standardized

avionics. Aerospace and Electronic Conference, 4, 1929-1936.

Chellappan, S., & Ali, H. (2003). An optimization model for aircraft maintenance scheduling and re-assignment. Transportation Research Part A: Policy and Practice, 37(1), 29-48.

Douglas, F. A.(2002). Readiness: A commander's responsibility. Air Force Journal of Logistics, 26(2), 12-21. Retrieved March 17, 2008, from

http://web.ebscohost. com/ehost/

Quan, G., Greenwood, G. W., Liu, D., & Hu, S. (2007). Searching for multiobjective preventive maintenance schedules: Combining preferences with evolutionary algorithms. European Journal of Operational Research, 177(3), 1969-1984.

Galloway, I.(1996). Design for support and support the design: integrated logistic support - the business case. Logistics Information Management, 9(1), 24-31.

Retrieved March 29, 2008, from http://web.ebscohost. com/ehost/

Department of the U.S. Army. (1999). Functional users manual for the army maintenance management System—Aviation(TAMMS-A). Washington, DC:

Department of the U.S. Army.

Forrester, J. W. (2007). System dynamics - a personal view of the first fifty years.

System Dynamics Review, 23(2/3), 345-358.

Forrester, J. W. (2007). System dynamics - the next fifty years. System Dynamics Review, 23(2/3), 359-370.

Knezevic, J. (1995). Planning maintenance resources for non-supported missions. Journal of Quality in Maintenance Engineering, 1(1), 60-68.

Kyung, B. Y., Hong, S. K., & So, Y. S. (2007). An air force logistics management index for effective aircraft operation. Transportation Research Part E:

Logistics and Transportation Review, 44(6), 1188-1204. Retrieved March 28,

2008, from http://www.sciencedirect.com/science/article/

Rodrigues, M. B., Karpowicz, M., & Kang, K. (2000). A readiness analysis for the argentine air force and the brazilian navy A-4 fleet via consolidated logistics support. Simulation Conference Proceedings, 1, 1068 - 1074.

Joo, S. J. (2007). Scheduling preventive maintenance for modular designed components: A dynamic approach. European Journal of Operational Research.

Retrieved March 28, 2008, from http://www.sciencedirect.com /science/article/

Bollapragada, S., Gupta, A., & Lawsirirat, C. (2007). Managing a portfolio of long term service agreements. European Journal of Operational Research, 182(3), 1399-1411.

Oliver, S. A., Johnson, A. W., White E. D., & Arostegui, M. A. (2001). Forecasting readiness: Regression analysis techniques. Air Force Journal of Logistics, 25(3), 1-29.

Walid, E. M., & Félix, M. C. (2000). A cdynamic approach for aircraft assignment and maintenance scheduling by airlines. Journal of Air Transport Management, 6(4), 233-237.

Wosltenholme, E. F. (1990). System enquiry: A system dynamics approach. New York : John Wiley & Sons Ltd.

Yao, Y., Ergun, O., Johnson, E., Schultz, W., & Singleton, J.M. (2008). Strategic planning in fractional aircraft ownership programs. European Journal of Operational Research, 189(2), 526-539.

附錄 A 基本模型之行為方程式

z Required Yield=SMOOTH(repaired II+ repaired III+ "repaired IV & P", smoothtime) ~ Set/Day ~ |

z "Nbr of Total Maintenance/Required Capacity"= ("Aircrafts Maintained Preservation & IV"+ Aircrafts Maintained II+ Aircrafts Maintained III\) ~ Set ~ |

z "Level-R08"= 180 ~ Day ~ |

z "Out L5-R08"= Min("Inventory L5-R08"/at+"In L5-R08","Ordered L3-R08"+"Order Backlog L5-R08"/at) ~ Orders/Day ~ |

z "Level-R03"= 180 ~ Day ~ |

z "Goods Delivering -R08"= DELAY FIXED ("Ordered L5-R08", "Level-R08" , 0) ~ Orders/Day ~ |

z "Goods Delivering-R03"= DELAY FIXED ( "Ordered L5-R03",

"Level-R03" ,0) ~ Orders/Day ~ |

z "Inventory L5-R08"= INTEG ("In L5-R08"-"Out L5-R08", "Initial stock-R08") ~ Orders ~ |

z "In L5-R08"= "Goods Delivering -R08" ~ Orders/Day ~ |

z "Material Requirement -R03"=("<II>Aircrafts Schedule Maintenance prior to 10hrs for time-changed components and phase maintenance"\+"<IV>Aircraft Repairing - Grounded& Damage need repairing immediately")*(1-"R03 Spare Replenishment % fm L3") ~ Set ~ |

z Preserved= DELAY FIXED ( Aircrafts Decided to be Preserved/at,14,0) ~ Set/Day ~ |

z "Flight hours -average loading per set a day"=ZIDZ("Flight hours - Required for Aviation Plan", Aircrafts Total) ~ hour/Day/Set ~ |

z "Inventory L3-R03"= INTEG ("In L3-R03"-"Out L3-R03", "Initial stock-R03") ~ Orders ~ |

z "Initial stock-R03"= 120 ~ Orders ~ |

z "Inventory L5-R03"= INTEG ("In L5-R03"-"Out L5-R03", "Initial stock-R03") ~ Orders ~ |

z "Initial stock-R08"= 120 ~ Orders ~ |

z Preparedness for War= 2 ~ Set ~ |

z "Flight hours-nominal readiness"= MAX(0,((Nbr of Mission

capable-Preparedness for War) * "Flight hours -avialable loading per set a day"\*"Flight - nbr of day to fly"/day)) ~ hour/Day ~ |

z "Repairing IV & P"= DELAY FIXED ( ("Aircrafts Maintenance Spare Pars available for<IV>"/at+ Unpreserved),7,0) ~ Set/Day ~ |

z "In Backlog L3-R03"=MAX(0, "Nbr of Orders-R03"-"Out L3-R03") ~ Orders/Day ~ |

z "R03 Spare Replenishment % fm L3"= IF THEN ELSE("switch for chapter 3.4-4"=0,(1-"Ratio of Backlog-R03"),0) ~ Dmnl ~ |

z "Ratio of Backlog-R03"="Order Backlog L3-R03"/"Accumulated Apply L2-R03" ~ Dmnl ~ |

z "Order Placed L3-R08"=MAX(0,"Nbr of Orders-R08")~ Orders/Day ~ |

z "Nbr of Orders-R08"="Material Requirement -R08"*hypothesis2/at ~ Orders/Day ~ |

z "Out L3-R08"=Min(("Inventory L3-R08"/at)+"In L3-R08",(("Order Backlog L3-R08"/at)+"Nbr of Orders-R08"\ )) ~ Orders/Day ~ |

z "Order Placed L3-R03"= MAX( 0,"Nbr of Orders-R03") ~ Orders/Day ~ |

z "In Backlog L3-R08"= MAX(0, "Nbr of Orders-R08"-"Out L3-R08"-"Order Placed L3-R03") ~ Orders/Day ~ |

z "Out L3-R03"=Min(("Inventory L3-R03"/at)+"In L3-R03", (("Order Backlog L3-R03"/at)+"Nbr of Orders-R03"\)) ~ Orders/Day ~ |

z "Nbr of Orders-R03"= "Material Requirement -R03"*hypothesis2/at ~ Orders/Day ~ |

z Hypothesis2= 10 ~ Orders/Set ~ |

z "Flight hours-veritable readiness"= MAX(0,(Nbr of Mission

Active-Preparedness for War)*"Flight hours -available loading per set a day"\

*"Flight - nbr of day to fly"/day) ~ hour/Day ~ |

z "<III>Aircrafts Repairing - Flyable & Defects can be repairing lately"=

(unplanned maintenance modeled refer to damage probability*hypothesis1) ~ Set ~ |

z "<IV>Aircraft Repairing - Grounded& Damage need repairing immediately"=

IF THEN ELSE("Switch 3.4-2"=1, 3*pulse(120, 20)+(unplanned maintenance modeled refer to damage probability\*(1-hypothesis1)),unplanned maintenance modeled refer to damage probability*(1-hypothesis1\))

~ Set ~ |

z "R08 Spare Replenishment % fm L3"= IF THEN ELSE("switch for chapter 3.4-4"=0,1-((Min("Order Backlog L3-R08","Order Backlog L5-R08"\

))/"Accumulated Apply L2-R08"),0) ~ Dmnl ~ |

z "Flight hours -accumulated per set"= INTEG ( "Flight hours -average loading per set a day", 0) ~ hour/Set ~ |

z "Readiness Concern -Allowance for Items II"= MAX(0,(Aircrafts

Total*(100-Readiness Required))/100-"Aircrafts Maintained Preservation &

IV"\ -Aircrafts Preserved-Aircrafts Maintained II-Aircrafts Maintained III) ~ Set ~ |

z Repaired III= Aircrafts Maintained III/ time to repair III ~ Set/Day ~ |

z Aircrafts Maintained II= INTEG ( Repairing II-repaired II, 1) ~ Set ~ |

z Aircrafts Maintained III= INTEG ( Repairing III-repaired III, 2) ~ Set ~ |

z Repairing III= DELAY FIXED ( "Aircrafts Allowed for Schedule Maintenance<III>"/at,7,0) ~ Set/Day ~ |

z Repaired II= Aircrafts Maintained II/ time to repair II ~ Set/Day ~ |

z Time to repair III= 7 ~ Day ~ |

z Repairing II= DELAY FIXED ( "Aircrafts Allowed for Schedule Maintenance<II>"/at,7,0) ~ Set/Day ~ |

z Time to repair II= 14 ~ Day ~ |

z Execute cannibalization indicator= IF THEN ELSE("switch on/off"=1, IF THEN ELSE( Readiness Nominal <= Readiness Required\ , IF THEN ELSE(Aircrafts Preserved>=5, 1,0),0),0) ~ Dmnl ~ |

z "Switch on/off"= 0 ~ Dmnl ~ |

z Damage Probability= WITH LOOKUP ("Flight hours -accumulated per set", ([(-0.6,0)-(500,0.5)],(0,0.05),(0.5,0.06),(1,0.05),(50,0.055),(100,0.15),(150,0.18

)\,(200,0.22),(250,0.28),(300,0.3),(400,0.35),(500,0.45),(800,0.5) )) ~ Dmnl ~ |

z Aircrafts Preserved= INTEG (Preserved-Unpreserved, 2) ~ Set ~ |

z "Flight hours -available loading per set a day"=2 ~ hour/Set/Day ~ |

z "Flight - nbr of day to fly"= 180/12 ~ Day ~ |

z "Unpreserved-special approved"= IF THEN ELSE(Execute cannibalization indicator=1, 2,0) ~ Set ~ |

z Unpreserved= (Aircrafts Preserved/time to unpreserved)+"Unpreserved-special approved"/at ~ Set/Day ~ |

z "<I>Aircrafts Schedule Maintenance prior to 200hrs for time-changed components & 25hrs for phase maintenance"\= 1 ~ Set ~ |

z "Order Backlog L3-R08"= INTEG ("In Backlog L3-R08", 50) ~ Orders ~ |

z "In L5-R03"= "Goods Delivering-R03" ~ Orders/Day ~ |

z "Accumulated Apply L2-R08"= INTEG ("Spare Apply L2-R08",100) ~ Orders ~ |

z "Aircrafts Allowed for Schedule Maintenance<II>"= IF THEN

ELSE(Readiness Nominal >= Readiness Required, Min( "Readiness Concern -Allowance for Items II"\ , "Aircrafts Repairing Spare Parts Available<II>

-applied forward 30 days"), 0 ) ~ Set ~ |

z Aircrafts decide to be blocked=MAX(0,"<II>Aircrafts Schedule Maintenance prior to 10hrs for time-changed components and phase maintenance"\

-"Aircrafts Allowed for Schedule Maintenance<II>") ~ Set ~ |

z "Aircrafts Maintenance Spare Parts Available for <II>"=MAX(0,("<II>Aircrafts Schedule Maintenance prior to 10hrs for time-changed components and phase maintenance"\ * "R03 Spare Replenishment % fm L3") ) ~ Set ~ |

z "Order Placed L5-R03"= MAX( 0,"Ordered L3-R03") ~Orders/Day ~ |

z "Aircrafts Maintenance Spare Parts Available for <III>"=

MAX(0,("<III>Aircrafts Repairing - Flyable & Defects can be repairing lately"

*"R08 Spare Replenishment % fm L3"\ )) ~ Set ~ |

z "Aircrafts Allowed for Schedule Maintenance<III>"= IF THEN

在文檔中 中 華 大 學 (頁 86-99)