• 沒有找到結果。

(a) u a, b, c, d ∈ Q, ŽJ€ a + b√ 2 + c√ 3 + d√ 6 ∈ Q(√ 2,√ 3) (b) ŽJ€ [Q(√ 2,√ 3

N/A
N/A
Protected

Academic year: 2022

Share "(a) u a, b, c, d ∈ Q, ŽJ€ a + b√ 2 + c√ 3 + d√ 6 ∈ Q(√ 2,√ 3) (b) ŽJ€ [Q(√ 2,√ 3"

Copied!
8
0
0

加載中.... (立即查看全文)

全文

(1)

Chapter 1. Field Extensions

(1) ƒ' Q(α), Q(β), Q(γ) / Q Ý simple extensions Í α, β, γ 5½”•

α2− 2 = 0, β2− 3 = 0|C γ2− 4γ + 2 = 0.

(a) ŽJ€ Q(α)/Q õ Q(β)/Q Î isomorphic extensions over Q.

(b) ŽJ€ Q(α)/Q õ Q(γ)/Q Î isomorphic extensions over Q.

(c) uá α, γ ∈ R, ŽJ€ Q(α) = Q(γ).

(2) Ê R/Q Ý subextension Q(√ 2,√

3)/Q.

(a) u a, b, c, d ∈ Q, ŽJ€ a + b√ 2 + c√

3 + d√

6 ∈ Q(√ 2,√

3) (b) ŽJ€ [Q(

2,√

3) : Q] = 4¬1€ Q( 2,√

3)Ý-ôK°×

îW a + b√ 2 + c√

3 + d√

6 ÝP, Í a, b, c, d ∈ Q.

(c) u α = a + b√ 2 + c√

3 + d√

6 Í a, b, c, d ∈ Q v a, b, c, d / 0,

ŽO a0, b0, c0, d0 ∈ Q ¸ÿ α−1= a0+ b0

2 + c0

3 + d0 6.

(3) u K = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1⊆ Kn= L Î×=™Ý field extensions. Ž J€ [L : K] = [Kn : Kn−1] · · · [K1 : K0]vJ€ L/K Î finite extension uv°uEXb 1 ≤ i ≤ n, Ki/Ki−1 / finite extension.

(4) ƒ' L/K Î×Í finite extension v p(x) ∈ K[x] Î×Í K[x] Ý

(2)

2 Exercise

(6) ƒ' α Î algebraic over Q v α ”• α2− 3α + 1 = 0. Ž0Õ β ∈ Q(α)

”• β2 = α.

(7) ƒ' α Î transcendental over K, ŽJ€3 K(α) 0Õ β ¸ÿ β2 = α.

(8) ƒ' L/K Î×Í field extension v α, β ∈ L, Í α algebraic over K,

‚ β transcendental over K. ŽJ€ α + β, α − β, αβ |C αβ−1 / transcendental over K.

(9) ƒ' K ⊆ F ⊆ L v F/K Î×Í algebraic extension. á α ∈ L, ŽJ

€ α transcendental over K uv°u α transcendental over F .

———————————– 09 October, 2007

(3)

Chapter 2. Galois Group and Fixed Field

(1) ƒ' α ∈ R ”• α5= 7,ƒ L = Q(α). ' F L/Q Ý intermediate fields XW/), ‚ G Gal(L/Q) Ý subgroups XW/).

(a) ŽO Gal(L/Q).

(b) ŽO F.

(c) ŽO G.

(d) uƒ G : F → G, ¸ÿEŒ F ∈ F L G(F ) = Gal(L/F ). Ž® G ÎÍ ×E×? ÎÍ ÌW?

(2) ƒ L = Q(√ 2,√

3). ' F L/Q Ý intermediate fields XW/), ‚ G Gal(L/Q)Ý subgroups XW/).

(a) ŽO Gal(L/Q).

(b) ŽO F.

(c) ŽO G.

(d) uƒ G : F → G, ¸ÿEŒ F ∈ F L G(F ) = Gal(L/F ). Ž® G ÎÍ ×E×? ÎÍ ÌW?

———————————– 16 October, 2007

(3) ƒ' L/Q field extension. ' F L/Q Ý intermediate fields XW/

), ‚ G Gal(L/Q) Ý subgroups XW/). ' F : G → F, ÍL EŒ H ∈ G ƒF(H) = LH = {λ ∈ L | σ(λ) = λ, ∀ σ ∈ H}.

(a) u L = Q(α) Í α ∈ R ”• α5 = 7,ŽEN×Í H ∈ G OŒ F(H)

¬1€ F ÎÍ ×E×? ÎÍ ÌW?

(b) u L = Q(√ 2,√

3),ŽEN×Í H ∈ G OŒ F(H) ¬1€ F ÎÍ

×E×? ÎÍ ÌW?

(4)

4 Exercise

(4) Ê C = R(i), Í i ∈ C ”• i2 = −1. ' σ1, σ2 ∈ Gal(C/R) ”•

σ1(i) = i|C σ2(i) = −i.

(a) Ž1€ ¢ σ2(i) = −σ1(i), ¬ σ2 6= −σ1.

(b) ƒ f = c1σ1+ c2σ2,Í c1, c2 ∈ C. uá f(1) = f(i) = 0, ŽJ€

c1= c2= 0, ¬µh1€ σ1, σ2 linearly independent over C.

(5) ƒ' L = Q(√ 2,√

3) v σi,j ∈ Gal(L/Q) ”• σij(

2) = (−1)i 2 v σi,j(

3) = (−1)j

3,Í 1 ≤ i, j ≤ 2.

(a) ŽJ€u

f = X

1≤i,j≤2

cijσij v f(1) = f(√

2) = f (√

3) = f (√ 6) = 0, JEXb 1 ≤ i, j ≤ 2, /b cij = 0

(b) ŽJ€

det



σ11(1) σ12(1) σ21(1) σ22(1) σ11(

2) σ12(

2) σ21(

2) σ22( 2) σ11(

3) σ12(

3) σ21(

3) σ22( 3) σ11(

6) σ12(

6) σ21(

6) σ22( 6)



 6= 0

(6) ƒ' L/K Î×Í finite extension v |Gal(L/K)| = [L : K] = n. ƒ Gal(L/K) = {σ1, . . . , σn}v α1, . . . , αn∈ LÎ L/K Ý×à basis. ŽJ€

det





σ11) σ21) · · · σn1) σ12) σ22) · · · σn2)

... ... . .. ... σ1n) σ2n) · · · σnn)



6= 0.

(7) ƒ' L/K Î×Í finite extension, F Î L/K Ý×Í intermediate field.

u σ ∈ Gal(L/K) Ê σ(F ) = {σ(λ) | λ ∈ F }.

(a) ŽJ€ σ(F ) ôÎ L/K Ý intermediate field.

(b) u α1, . . . , αnÎ F/K Ý×à basis, ŽJ€ σ(α1), . . . , σ(αn)Î σ(F )/K Ý×à basis, ¬µh1€ [F : K] = [σ(F ) : K].

———————————– 30 October, 2007

(5)

(8) ƒ' L = Q(√ 2,√

3)v σ ∈ Gal(L/Q) ”• σ(√

2) = (−1)√

2v σ(√ 3) =

−√

3. ƒ H = {1, σ} ⊆ Gal(L/Q), á F(H) = Q(√

6), Ž¿àJ

€ |H| = [L : F(H)] Ý]°0Õ c1, c2, c3 ∈ Q(√

6)  0 v”•

c1+ c2

2 + c3 3 = 0.

Chapter 3. Normal Extension õ Separable Extension

(1) ƒ' F/K Î×Í field extension, f(x) ∈ K[x] v L1, L2 5½Î f(x) over K õ f(x) over F Ý splitting field.

(a) u L/K Î×Í field extension ”• L1 ⊆ L, Ž1€ f(x) splits completely in L.

(b) u L/K Î×Í field extension ”• K ⊆ L ⊆ L1 v f(x) splits completely in L, Ž1€ L = L1.

(c) u L/K Î×Í field extension ”• L1 ⊆ Lv L2⊆ L,ŽJ€ L1⊆ L2. (d) ŽJ€ L1= L2 uv°u F ⊆ L1.

(2) ƒ' K Î×Í field, f(x) ∈ K[x] v L Î f(x) over K Ý splitting field.

u deg(f(x)) = n, ŽJ€ [L : K] | n!.

———————————– 6 November, 2007

(3) ƒ' K Î×Í field v f(x) ∈ K[x]. Ž¿àó.hû°J€ f(x) over K Ý splitting field ÄD3.

(4) Ê f(x) = x2− 3. Ž3 R 0Õ f(x) over Q |C f(x) over Q(√ 2)Ý splitting field.

(5) ƒ K = Q(√

2)v L = Q(√ 2,√

3). Ê σ ∈ Gal(K/Q) ”• σ(√

2) = −√ 2.

(6)

6 Exercise

(6) ƒ' L/K Î×Í finite extension v φ : L → L0 Î×Í ring isomorphism.

(a) ŽJ€ φ(K) = {φ(k) | k ∈ K} Î L0 Ý subfield.

(b) ŽJ€u α1, . . . , αn∈ LÎ L over K Ý×à basis, J φ(α1), . . . , φ(αn) Î L0 over φ(K)Ý×à basis, ¬µhÿ [L : K] = [L0 : φ(K)].

(7) ƒ' L/K Î×Í field extension v [L : K] = 2, ŽJ€ L/K Î×Í normal extension.

(8) ƒ' L/K Î×Í field extension v α1, . . . , αn∈ L¸ÿ K(α1, . . . , αn)/K Î×Í finite normal extension. ¨ƒ' F/K ôÎ×Í field extension v F ⊆ L,ŽJ€ F (α1, . . . , αn)/F ôÎ×Í finite normal extension.

———————————– 20 November, 2007 (9) ƒ' L/K Î field extension, f(x), g(x) ∈ K[x]. ŽJ€ f(x) | g(x) in K[x]

uv°u f(x) | g(x) in L[x].

(10) ƒ' L/K Î×Í finite extension v charK = p. ƒ' L Î separable over K,ŽJ€ p | [L : K].

(11) ƒ' L = K(α) Î×Í finite extension, L ⊆ N v N/K Î×Í normal extension.

(a) ƒ' charK = 0, ŽJ€ |MK(L, N )| = [L : K].

(b) ƒ' charK = p v p - [L : K], ŽJ€ |MK(L, N )| = [L : K].

(c) ƒ' charK = p v L/K Î separable extension, ŽJ€

|MK(L, N )| ≤ [L : K]

p .

———————————– 11 December, 2007

(7)

Chapter 4. Galois Extension

(1) ¾\¬1€ìøÍ filed extension L/K Î Galois extension.

(a) K = Q, L = K(α) Í α Î x3− 2 = 0q.

(b) K = Q(ω), L = K(α) Í ω, α 5½Î x2+ x + 1 = 0  x3− 2 = 0

q.

(c) K = Q, L = K(ω, α) Í ω, α 5½Î x2+ x + 1 = 0  x3− 2 = 0

q.

(d) K = F3(γ), L = K(β) Í γ Î transcendental over F3 v β Î x3− γ = 0q.

(e) K = F3(γ), L = K(λ) Í γ Î transcendental over F3 v λ Î x4− γ = 0q.

(f) K = F3(γ)(ζ), L = K(λ) Í γ Î transcendental over F3, ζ Î x2+ 1 = 0qv λ Î x4− γ = 0q.

(2) ¾\¬1€ìøÍ filed extension L/K Î Galois extension.

(a) K Î×Í field v charK 6= 2, L = K(α) Í α over K Ý minimal polynomial  degree 2.

(b) K = Q, L = K(β) Í β over K Ý minimal polynomial  degree 3 vbÌq.

(8)

8 Exercise

(3) ƒ L = Q(√ 2,√

3)C K = Q.

(a) ŽJ€ L/K Î Galois extension.

(b) Ž0Œ Gal(L/K) ÝXb subgroups.

(c) Ž0Œ L/K XbÝ intermediate fields.

(d) Ž0Œ Gal(L/K) ÝXbÝ normal subgroups.

(e) Ž0ŒXb L/K Ý intermediate field F ¸ÿ F/K Î Galois extension.

(4) ƒ L = Q(α) Í α ∈ C Î x4+ x3+ x2+ x + 1 = 0qvƒ K = Q.

(a) ŽJ€ L/K Î Galois extension.

(b) Ž0Œ Gal(L/K) ÝXb subgroups.

(c) Ž0Œ L/K XbÝ intermediate fields.

(d) Ž0Œ Gal(L/K) ÝXbÝ normal subgroups.

(e) Ž0ŒXb L/K Ý intermediate field F ¸ÿ F/K Î Galois extension.

(5) ƒ L = Q(β, ω) Í β, ω ∈ C 5½Î x3− 2 = 0|C x2+ x + 1 = 0

qvƒ K = Q.

(a) ŽJ€ L/K Î Galois extension.

(b) Ž0Œ Gal(L/K) ÝXb subgroups.

(c) Ž0Œ L/K XbÝ intermediate fields.

(d) Ž0Œ Gal(L/K) ÝXbÝ normal subgroups.

(e) Ž0ŒXb L/K Ý intermediate field F ¸ÿ F/K Î Galois extension.

———————————– 25 December, 2007

參考文獻