• 沒有找到結果。

第二章、 文獻回顧

2.3 氧化鋅磊晶薄膜

由於現階段 ZnO 單晶仍不普及,因而,大多數 ZnO 磊晶皆藉由 異質磊晶的方式,於其他較易於取得的基板上進行磊晶成長。在極性 面(0001)磊晶方面,ZnO 磊晶成長於矽[2.64]、藍寶石[2.68]、碳化矽 [2.69]、鉮化鎵[2.70, 2.71]、氟化鈣[2.72]、ScAlMgO4[2.73]、LiNbO3[2.74]

等基板皆已被實現,其中,由於藍寶石成本相對便宜,且化學性質穩 定,最常被使用;儘管藍寶石與 ZnO 的晶格不匹配高達 18.3%,但是 經過眾多團隊多年來的研究,高品質的極性面 ZnO 磊晶薄膜已可被 實現[2.75],然而,非極性面的 ZnO 磊晶技術卻是進十年來才開始受 到重視。

所謂非極性 ZnO 磊晶膜,包含常見的棱柱面(1120)、(1100),以及 其他(hki0)平面,只要其其極性方向(c 軸)平躺於試片表面,就可稱之 為非極性面 ZnO 磊晶。

不若極性面磊晶面的成長,由於 ZnO 為六方晶結構對稱性的關 係,當其 c 軸平躺於試片表面,必然會存在一般極性面磊晶不須考慮 的異向性問題,包含著結構、擴散、熱膨脹係數等,尤其是與基板表 面的晶格匹配異向性,對於非極性面 ZnO 來說,這是其磊晶成長需

29

克服的首要課題。

目前已被實現的非極性面 ZnO 磊晶薄膜與其基板的磊晶關係整 理於表 2-4;由於晶體對稱性的關係,ZnO 的非極性面具有較低的對 稱性,若成長於較高對稱性的基板表面,例如 SrTiO3 (001)[2.66, 2.77]

與 MgO (001)[2.78, 2.79],將會存在超過一種成長方向,形成晶域,

因而使 ZnO 磊晶膜出現產生多餘的晶界[2.80]。

表 2-4 非極性 ZnO 磊晶基板與磊晶關係

ZnO Plane Substrate Epitaxial relationship Ref.

)

LiAlO2[2.81 – 2.83]、LiGaO2[2.84]分別為正方晶與斜方晶,由於 其較低的晶體對稱性,且有著相對低的晶格不匹配度(各方向皆小於 4%),故可成長出高品質(XRC ~0.16)的非極性 ZnO 磊晶膜;然而由

30

於基板中鋰原子於高溫的不穩定性,當製程溫度超過 600C 時,將會 產生鋰原子擴散至 ZnO 磊晶膜的現象,進而影響磊晶膜本身的特性。

LaAlO3為菱方晶,但是若以其內部金屬離子描述其晶格,其晶 體可簡化為 a = b = c, =  =  = 90.12的結構,故一般亦常以立方

晶的角度對其進行詮釋(表 2-4 中 LaAlO3即為採用 pseudo-cubic, pc 座 標)。與 SrTiO3、MgO 相同,以其(001)PC進行成長,亦存在 ZnO 可 沿著多個方向成長的問題[2.80, 2.85]。然而,藉由基板工程,採用(112) 甚至(114)晶面進行成長,由於其基板表面的對稱性從四軸對稱降低為 二軸對稱,如此將可侷限 ZnO 沿著單一方向成長[2.86 – 2.88]

除了上述基板外,由於菱方晶的晶體對稱性較低,其(1100)

(1012)

等亦可成功成長出單一成長方向的 ZnO 磊晶膜[2.89, 2.90],其中,又 以藍寶石基板(sapphire, Al2O3)最為常見。

藍寶石結構如圖 2-10 所示,為菱方結構,空間群為 R3̅c,晶格 常數 a = 5.132Å,

 = 55.3(綠色座標軸),若以擬立方晶型(pseudocubic)

描述其結構,其鋁原子可視為 a = 3.5 Å , = 85.7(藍色座標軸)的 morphological rhombohedral 結構[2.91]。一般為了方便,大多將其置 入六方晶格內,以 a = 4.76 Å ,c = 12.99 Å (黑色座標軸)的六方晶結構

31

描述之[2.92],本研究亦以六方晶格座標描述藍寶石之結構。

圖 2-10 藍寶石結構示意圖,綠色座標為菱方晶座標軸,藍色為擬立 方晶座標軸,黑色為六方晶格座標軸;紅色面為其 R 面。

儘管可藉由六方晶格座標對藍寶石之結構進行描述,但是仍需注 意,其結構為兩個 Al-O 八面體組成的多面體,以 ABCABC 的順序進 行堆疊(如圖 2-11 所示),故其沿著最密堆積面之對稱性仍為 3-fold,

並非六方晶的 6-fold。

32

圖 2-11 藍寶石基板堆疊示意圖,(a)為沿著最密堆積面之俯視圖,(b) 為沿著最密堆積方向之側視圖。

33

由於藍寶石基板相對便宜、化學性質穩定,目前藍寶石基板已成 為一般極性面發光二極體元件的主要磊晶基板。在藍寶石常見、穩定 的低指數面中,C 面(0001)與 A 面(1120)可用於成長極性面(c 面)ZnO 磊晶,而 M 面(1100)與 R 面(1012)則分別適合用於成長 m 面與 A 面 ZnO 磊晶[2.17, 2-90];其中又以 R 面成長非極性 A 面 ZnO 磊晶膜最為常 見。ZnOA 面與藍寶石 R 面的表面基本週期結構示意於圖 2-12(a)與(b),

其磊晶關係為

[ 0001 ]

ZnO

//[ 1 01 1 ]

sapphire

、 [ 1 100 ]

ZnO

//[ 1 2 10 ]

sapphire,除了表面週期 外,若進一步由圖 2-12(c)與(d)的 ZnOA 面與藍寶石 R 面之側視圖觀 察,可發現 ZnOA 面與藍寶石 R 面皆為 1-fold,此特性不僅可避免 ZnO 沿著多個方向成長,甚至可進一步控制 ZnO 的極性方向[2.93]。

藉由 R 面藍寶石基板,單一成長方向之 A 面 ZnO 已可藉由 PLD、

sputtering、PAMBE、MOCVD 等製程方式所實現[2.90, 2.94 – 2.97]。

34

圖 2-12 ZnO 與藍寶石基板磊晶關係示意圖,(a) ZnOA 面基本週期結 構,(b)藍寶石 R 面表面基本週期結構,(c)A 面 ZnO 側視圖,(d)R 面

藍寶石側視圖。其中灰色為 Zn、藍色為 Al、紅色為 O。

35

36

排明顯的少了許多[2.17, 2.102, 2.103],但是值得注意的是,不同於 傳統極性面磊晶膜,非極性面磊晶膜往往存在著顯著的基面疊差 [2.17, 2.103, 2.104]。

儘管過去十年來,已有許多非極性 ZnO 的相關研究,A 面 ZnO 亦已藉由 PLD、sputtering、PAMBE、MOCVD 等製程方式成長於 R 面藍寶石基板[2.90, 2.94 – 2.97],然而,儘管已有許多研究,ZnO 薄 膜仍因過多的缺陷致使無法被有效利用。在大多數磊晶製程中,緩衝 層的利用,往往可以有效提昇其結晶品質,然而,在 A 面 ZnO 成長 於 R 面藍寶石基板的研究中,即便已藉由高品質 GaN 磊晶層或極平

37

坦的 ZnO:Co 作為緩衝層,對其結晶品質的提昇仍相當有限,甚至反 而造成結晶性的下降[2.106, 2.107]。由於晶體內的缺陷與其晶體的成 長行為息息相關,然而,非極性 ZnO 的研究卻鮮少從晶體成長的過 程進行深入研究。韓國 Lee 等人曾藉由 TEM 沿著[0001]ZnO觀察 ZnO 於 R 面藍寶石上初始成長的行為,並推斷 ZnO 於 R 面藍寶石上乃藉 由 VW 模式進行成長[2.102],然而法國 Chauveau 等人亦於實驗中觀 察到 ZnO 於 R 面藍寶石上之成長行為並非如一般於 C 面上成長之 VW 模式[2.108]。本研究將藉由脈衝雷射蒸鍍系統搭配臨場反射式高 能電子繞射儀進行即時的磊晶製程監控,並藉由原子力顯微鏡、高解 析 X 光繞射儀與穿透式電子顯微鏡,分析不同磊晶階段之形貌、結 構特性,希望藉由深入瞭解整個磊晶製程的演變,得以改善 ZnO 磊 晶膜的品質。

38

參考文獻

[2.1] H Dixit, R Saniz, D Lamoen and B Partoens, The quasiparticle band structure of zincblende and rocksalt ZnO, J. Phys.: Condense Matter, 22, 125505 (2010).

[2.2] F. Decremps, J. Zhang and R. C. Liebermann, New phase

boundary and high-pressure thermoelasticity of ZnO, Europhys Lett., 51, 268 (2000).

[2.3] A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases, J. Appl. Phys., 102, 071101 (2007).

[2.4] B. Amrani, I. Chiboub, S. Hiadsi, T. Benmessabih, N. Hamdadou, Structural and electronic properties of ZnO under high pressures, Solid State Commun., 137, 395 (2006).

[2.5] J. E. Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess, LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO, Phys. Rev. B., 62, 1660 (2000).

[2.6] T. Yao, S.K. Hong, (Eds.), Oxide and Nitride Semiconductors, Springer, (2009).

[2.7] H.Sawada, R. Wang, A. W. Sleight, An electron density residual study of zinc oxide, J. Solid State Chem., 122, 148 (1996).

[2.8] H. Schulz, K.H. Thiemann, Structural and magnetic properties of transition metal substituted ZnO, Solid State Commun., 32, 783 (1979).

[2.9] O. García-Martínez, R.M. Rojas, E. Vila, Microstructural

characterization of nanocrystals of ZnO and CuO obtained from basic salts, Solid State Ionics, 63-65, 442 (1993).

[2.10] E. H. Kisi and M. M. Elcombe, u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Cryst. C, 45, 1867 (1989).

[2.11] J. Albertsson, S. C. Abrahams, Å . Kvick, Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric

coefficient thermal dependences in ZnO, Acta Cryst. B, 45, 34

39

(1989).

[2.12] H.Y. Wu, X.L. Cheng, C.H. Hu, and P. Zhou, The structure and thermodynamic properties of zinc oxide with wurtzite and rocksalt structure under high pressures, Physica B, 405, 606 (2010).

[2.13] F. Bernardini and V. Fiorentini, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B., 56, 10024 (1997).

[2.14] A. D. Corso, M. Posternak, R. Resta, and A. Baldereschi, Ab initio study of piezoelectricity and spontaneous polarization in ZnO, Phys. Rev. B., 50, 10715 (1994).

[2.15] CINDAS LLC, Thermophysical Properties of Matter Database 7, (2011). https://cindasdata.com/Applications/TPMD/

[2.16] Yu. A. Osipiyan, I. S. Smirnova, Perfect Dislocations in the Wurtzite Lattice, Phy. Status Solidi (b), 30, 19 (1968).

[2.17] J.-M. Chauveau, P. Vennéguès, M. Laügt, C. Deparis, J.

Zuniga-Perez, and C. Morhain, Interface structure and anisotropic strain relaxation of nonpolar wurtzite (110) and (100) orientations:

ZnO epilayers grown on sapphire, J. Appl. Phys., 104, 073535 (2008).

[2.18] D. N. Zakharov and Z. Liliental-Weber, Structural TEM study of nonpolar a-plane gallium nitride grown on

( 11 2 0 )

4H-SiC by

organometallic vapor phase epitaxy, Phys. Rev. B, 71, 235334 (2005).

[2.19] Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei,

Energetics and electronic structure of stacking faults in ZnO, Phys.

Rev. B, 70, 193206 (2004).

[2.20] V. Narayanan, K. Lorenz, W. Kim, and S. Mahajan, Origins of threading dislocations in GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition, Appl. Phys. Lett., 78, 1544 (2001)

[2.21] S. K. Han, J.-H. Kim, S.-K. Hong, J.-H. Song, J.-H. Song, J. W.

40

Lee, J. Y. Lee, S. I. Hong, T. Yao, Investigation of nonpolar

( 11 2 0 )

a-plane ZnO films grown under various Zn/O ratios by

plasma-assisted molecular beam epitaxy, J. Cryst. Growth, 312, 2196 (2010).

[2.22] J. W. Lee, S. K. Han, S.-K. Hong, J. Y. Lee, Investigation of initial growth and very thin

( 11 2 0 )

ZnO films by cross-sectional and plan-view transmission electron microscopy, Appl. Surf. Sci., 256, 1849 (2010).

[2.23] J. W. Lee, S. K. Han, S.-K. Hong, J. Y. Lee, T. Yao,

Characterization of microstructure and defects in epitaxial ZnO

)

0 2 11

(

films on Al2O3

( 1 1 02 )

substrates by transmission electron microscopy, J. Cryst. Growth, 310, 4102 (2008).

[2.24] H. Blank, P. Delavignette, R. Gevers, S. Amelinckx, Fault Structures in Wurtzite, phys. status solidi (b), 7, 747 (1964).

[2.25] C. M. Drum, Intersecting faults on basal and prismatic planes in aluminium nitride, Phi. Mag., 11, 313 (1965).

[2.26] Y. Yan and M. M. Al-Jassim, M. F. Chisholm, L. A. Boatner, and S. J. Pennycook, M. Oxley,

[ 1 1 00 ]

/

( 1 1 02 )

twin boundaries in wurtzite ZnO and group-III-nitrides, Phys. Rev. B, 71, 041309(R) (2005) [2.27] J. E. Northrup, J. Neugebauer, and L. T. Romano, Inversion

domain and stacking mismatch boundaries in GaN, Phys. Rev. Lett., 77, 103 (1996)

[2.28] W.-L. Wang, C.-Y. Peng, Y.-T. Ho, and L. Chang, Microstructure of a-plane ZnO grown on LaAlO3 (001), Thin Solid Films, 518, 2967 (2010).

[2.29] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W.

Litton, G. Cantwell, W.C. Harsch, Electrical properties of bulk ZnO, Solid State Commun, 105, 399 (1998).

41

[2.30] J. Nause and B. Nemeth, Pressurized melt growth of ZnO boules, Semi. Sci. and Tech., 20, S45 (2005).

[2.31] K. Ellmer, A. Klein, and B. Rech (Eds), Transparent conductive zinc oxide, Springer, (2007).

[2.32] N. F. Foster and G. A. Rozgonyi, Zinc oxide film transducers, Appl. Phys. Lett., 8, 221 (1966).

[2.33] N. F. Foster, Crystallographic orientation of zinc oxide films deposited by triode sputtering, J. Vac. Sci. Technol., 6, 111 (1969).

[2.34] J. B. Webb, D. F. Williams, and M. Buchanan, Transparent and highly conductive films of ZnO prepared by rf reactive magnetron sputtering, Appl. Phys. Lett., 39, 640 (1981).

[2.35] M. Matsuoka, Nonohmic properties of zinc oxide ceramics, Jpn.

J. Appl. Phys., 10, 736 (1971).

[2.36] K. Ellmer and G. Vollweiler, Electrical transport parameters of heavily-doped zinc oxide and zinc magnesium oxide single and multilayer films heteroepitaxially grown on oxide single crystals, Thin Solid Films, 496, 104 (2006).

[2.37] S. Lany and A. Zunger, Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides, Phys. Rev. Lett., 98, 045501 (2007).

[2.38] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M.

Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H.

Koinuma, and M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nature, 4, 42 (2005)

[2.39] J. L. Birman, Polarization of Fluorescence in CdS and ZnS Single Crystals, Phys. Rev. Lett., 2, 157 (1959).

[2.40] K. Koike, K. Hama, I. Nakashima, G.-Y. Takada, K.-I. Ogata, S.

Sasa, M. Inoue, M. Yano, Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications, J. Crystal Growth, 278, 288 (2005).

[2.41] S. Shigemori, A. Nakamura, J. Ishihara, T. Aoki and J. Temmyo,

42

Zn1-xCdxO film growth using remote plasma-enhanced metalorganic chemical vapor deposition, Jpn. J. Appl. Phys., 43, L1088 (2004).

[2.42] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K.

Tamura, T. Yasuda, and H. Koinuma, Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films, Appl. Phys. Lett., 78, 1237 (2001).

[2.43] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, MgxZn1−xO as a II–

VI widegap semiconductor alloy, Appl. Phys. Lett., 72, 2466 (1998).

[2.44] C. Jagadish and S. J. Pearton (Eds), Zinc oxide bulk, thin films and nanostructures: Processing, properties, and applications, Elsevier, (2006).

[2.45] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt and P. G. Baranov, Hydrogen:

a relevant shallow donor in zinc oxide, Phys. Rev. Lett., 88, 045504 (2002).

[2.46] H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D.M.

Hofmann, B.K. Meyer, Optical investigations on excitons bound to impurities and dislocations in ZnO, Opt. Mater., 23, 33 (2003).

[2.47] M. Schirra, R. Schneider, A. Reiser, G.M. Prinz, M. Feneberg, J.

Biskupek, U. Kaiser, C.E. Krill, R. Sauer, and K. Thonke,

Acceptor-related luminescence at 3.314 eV in zinc oxide confined to crystallographic line defects, Physica B, 401-402, 362 (2007).

[2.48] M. Schirra, R. Schneider, A. Reiser, G.M. Prinz, M. Feneberg, J.

Biskupek, U. Kaiser, C.E. Krill, K. Thonke, and R. Sauer, Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide, Phys. Rev. B., 77, 125215 (2008).

[2.49] B. Sieber, A. Addad, S. Szunerits, and R. Boukherroub, Stacking faults-induced quenching of the UV luminescence in ZnO, J. Phys.

Chem. Lett., 1 , 3033 (2010).

[2.50] A. Janotti and C. G. Van de Walle, Native point defects in ZnO, Phys. Rev. B., 76, 165202 (2007).

43

[2.51] P. Erhart, A. Klein, and K. Albe, First-principles study of the structure and stability of oxygen defects in zinc oxide, Phys. Rev. B., 72, 085213 (2005).

[2.52] P. Erhart, K. Albe, and A. Klein , First-principles study of intrinsic point defects in ZnO: Role of band structure, volume

relaxation, and finite-size effects, Phys. Rev. B., 73, 205203 (2006).

[2.53] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, A comparative analysis of deep level emission in ZnO layers

deposited by various methods, J. Appl. Phys., 105, 013502 (2009).

[2.54] T. Makino, Y. Segawa, M. Kawasaki and H. Koinuma, Optical properties of excitons in ZnO-based quantum well heterostructures, Semicond. Sci. and Tech., 20, S78 (2005).

[2.55] X. Q. Lv, J. Y. Zhang, W. J. Liu, X. L. Hu, M. Chen and B. P.

Zhang, Optical properties of ZnO/MgZnO quantum wells with graded thickness, J. Phys. D, 44, 365401 (2011).

[2.56] T. Makino, A. Ohtomo, C.H. Chia, Y. Segawa, H. Koinuma, M.

Kawasaki, Internal electric field effect on luminescence properties of ZnO/(Mg,Zn)O quantum wells, Physica E, 21, 671 (2004).

[2.57] J. Narayan and B. C. Larson, Domain epitaxy: A unified paradigm for thin film growth, J. Appl. Phys., 93, 278 (2003).

[2.58] E. Bauer, Phänomenologische theorie der kristallabscheidung an oberflächen II, Z. Kristallogr., 110, 395 (1958).

[2.59] F. C. Frank and J. H. Van der Merwe, One-dimensional

dislocations. II. Misfitting monolayers and oriented overgrowth, Proc.

R. Soc. London, Ser. A 198, 216 (1949).

[2.60] M. Volmer and A. Weber, Keimbildung in cubers cattigten gebilden, Z. Phys. Chem. 119, 277 (1926).

[2.61] I. N. Stranski and L. Krastanov, Theory of orientation separation of ionic crystals, Sitzber. Akad. Wiss. Wien, Math.-naturw. Klasse, Abt. IIb, 146, 797 (1938).

[2.62] H. J. Scheelm and T. Fukuda (Eds), Crystal Growth Technology, Wiley, (2003).

44

[2.63] W. Hong, H. N. Lee, M. Yoon, H. M. Christen, D. H. Lowndes, Z.

Suo, and Z. Zhang, Persistent step-flow growth of strained films on vicinal substrates, Phys. Rev. Lett., 95, 095501 (2005).

[2.64] M. A. Steinberg, Growth spirals originating from screw

dislocations on electrolytically produced titanium crystals, Nature, 170, 1119 (1952).

[2.65] S. Amelinckx, Spiral growth on carborundum crystal faces, Nature, 167, 939 (1951).

[2.66] I. V. Markov (Ed.), Crystal growth for beginners: Fundamentals of nucleation, crystal growth and epitaxy, World Scientific, (2003).

[2.67] R. J. Lad, P. D. Funkenbusch, and C. R. Aita, Postdeposition annealing behavior of rf sputtered ZnO films, J. Vac. Sci. Technol., 17, 808 (1980).

[2.68] T. Mitsuyu, S. Ono, and K. Wasa, Structures and SAW properties of rf‐sputtered single‐crystal films of ZnO on sapphire, J. Appl. Phys., 51, 2464 (1980).

[2.69] T. Matsuoka, N. Yoshimoto, T. Sasaki, A. Katsui, Wide-gap semiconductor InGaN and InGaAln grown by MOVPE, J. E. Mater., 21, 157 (1992).

[2.70] W.-C. Shih, M.-S. Wu, Growth of ZnO films on GaAs substrates with a SiO2 buffer layer by RF planar magnetron sputtering for surface acoustic wave applications, J. Cryst. Growth, 137, 319 (1994).

[2.71] D.-K. Hwang, K.-H. Bang, M.-C. Jeong, and J.-M. Myoung, Effects of RF power variation on properties of ZnO thin films and electrical properties of p–n homojunction, J. Cryst. Growth, 254, 449 (2003).

[2.72] H.J. Ko, Y.F. Chen, Z. Zhu, T. Hanada, T. Yao, Effects of a low-temperature buffer layer on structural properties of ZnO

epilayers grown on (111)CaF2 by two-step MBE, J. Cryst. Growth, 208, 389 (2000).

[2.73] A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y.

45

Segawa, H. Koinuma, and M. Kawasaki, Single crystalline ZnO films grown on lattice-matched ScAlMgO4 (0001) substrates, Appl. Phys.

Lett., 75, 2635 (1999).

[2.74] H.-B. Kang, K. Yoshida and K. Nakamura, Growth of ZnO thin films on LiNbO3 substrates by electron cyclotron resonance-assisted molecular beam epitaxy, Jpn. J. Appl. Phys., 37, 5220 (1998).

[2.75] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, A. Waag, High-quality ZnO layers grown by MBE on sapphire, Superlattice

[2.75] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, A. Waag, High-quality ZnO layers grown by MBE on sapphire, Superlattice