• 沒有找到結果。

第三章、 實驗方法

4.7 總結

綜合本章節所觀察到 ZnO 於 R 面藍寶石基板之成長行為,沉積 溫度在 600C 以上與以下,其兩者間存在著顯著的差異。

較低的沉積溫度,其具有較高的沉積速率,以基板表面平台的島 狀成核為主,由於結構異向性,隨著沉積量的增加,其晶粒很快的會 沿著 c 軸方向拉長,較低的沉積溫度、較高的沉積速率以及較粗糙的 表面,將導致低溫製程之 ZnO 磊晶沿著

[ 1 1 00 ]

ZnO方向存在著相當程度 的殘留張應變,而在[0001]ZnO方向,受到晶格錯配應力的影響,其呈 現壓應力,不過由於 LT-ZnO/sapphire 界面相對的不完美,其壓應力 仍有些微的釋放。

在高溫沉積條件下,ZnO 的成核將傾向於沿著基板的階梯成核,

然而,當基板表面完全被 ZnO 覆蓋後,又會轉成於平坦表面島狀成 核/成長的方式;其成長異向性大約需超過 4000pulses 才會顯現,在 這之前,表面相對平坦,由於較低的沉積速率與較高的沉積溫度,將 導致沿著

[ 1 1 00 ]

ZnO方向存在著殘留壓應變;然而,當其表面的結構異向 性也顯露後,可發現此試片沿著[0001]ZnO軸存在相當程度的彎曲,並 且沿著

[ 1 1 00 ]

ZnO方向之殘留應變也轉成張應變的形式。在[0001]ZnO方向

122

上,相對於 LT-ZnO,HT-ZnO/sapphire 界面存在著較少的缺陷以及較 完美的接合行為,故在此方向上,ZnO 的晶格趨近於被基板完全應變 的狀態。

值得注意的是,在降溫過程中,不論沉積溫度高低,RHEED 繞 射圖形都會發生明顯的變化,而經由改變降溫速率,也可以發現到較 高的降溫速率下,ZnO 表面會出現沿著

[ 1 1 00 ]

ZnO方向之凹痕,光激發 光譜亦可發現到高速降溫試片存在著較高的缺陷發光行為,以及較低 的載子復合發光效率;由於 ZnO 與藍寶石在[0001]ZnO方向上存在著 顯著的熱膨脹錯配度,推測此與其熱膨脹係數的差異有關。

123

參考文獻

[4.1] T.C. Zhang, Z.X. Mei, A.Yu Kuznetsov, X.L. Du, Realization of non-polar ZnO

( 11 2 0 )

homoepitaxial films with atomically smooth surface by molecular beam epitaxy, J.Cryst. Growth 325, 93 (2011).

[4.2] J. W. Lee, S. K. Han, S.-K. Hong, J. Yong Lee, Takafumi Yao, Characterization of microstructure and defects in epitaxial ZnO

) 0 2 11

(

films on Al2O3 (1102) substrates by transmission electron microscopy, J. Cryst. Growth 310, 4102 (2008).

[4.3] J. W. Lee, S. K. Han, S.-K. Hong, J. Y. Lee, Investigation of initial growth and very thin

( 11 2 0 )

ZnO films by cross-sectional and plan-view transmission electron microscopy, Appl. Surf. Sci., 256, 1849 (2010).

[4.4] J.-M. Chauveau, C. Morhain, M. Teisseire, M. Laügt, C. Deparis, J. Zuniga-Perez, B. Vinter, (Zn, Mg)O/ZnO-based heterostructures grown by molecular beam epitaxy on sapphire: Polar vs. non-polar, Microelectron. J., 40, 512 (2009).

[4.5] D. B. Geohegan and A. A. Puretzky, Dynamics of laser ablation plume penetration through low pressure background gases, Appl.

Phys. Lett., 67, 197 (1995).

[4.6] G. Koster, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Imposed layer-by-layer growth by pulsed laser interval deposition, Appl. Phys. Lett., 74, 3729 (1999).

[4.7] W. Hong, H. N. Lee, M. Yoon, H. M. Christen, D. H. Lowndes, Z.

Suo, and Z. Zhang, Persistent step-flow growth of strained films on vicinal substrates, Phys. Rev. Lett., 95, 095501 (2005).

[4.8] J. P. Hirth and G. M. Pound, Condensation and evaporation:

nucleation and growth kinetics pergamon, Oxford, (1963).

[4.9] S. B. Lee, Y.-M. Kim, D.-S. Ko, T.-Y. Ahn, Y.-W. Kim, and J.

Park, Kinetic roughening of a ZnO grain boundary, Appl. Phys. Lett., 96, 191906 (2010).

124

[4.10] E. R. Dobrovinskaya, L. A. Lytvynov, V. Pishchik, Sapphire - Material, Manufacturing, Applications, Springer (2009)

[4.11] A. Wandera, N.M. Harrison, An ab initio study of ZnO

( 10 1 0 )

, Surf. Sci., 457, L342 (2000).

[4.12] A. Wandera, N.M. Harrison, An ab-initio study of ZnO

( 11 2 0 )

, Surf. Sci., 468, L851 (2000).

[4.13] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T.S.

Turner, G. Thornton, N.M. Harrison, Stability of polar oxide surfaces, Phys Rev Lett., 86, 3811 (2001).

[4.14] J. Narayan and B. C. Larson, Domain epitaxy: A unified paradigm for thin film growth, J. Appl. Phys., 93, 278 (2003).

[4.15] P. Pant, J.D. Budai, and J. Narayan, Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation, Acta Mater., 58, 1097 (2010).

[4.16] G. Saraf, T. Siegrist, Y. Lu, Structural anisotropy in a-MgxZn1-xO (0≤x≤0.33) films on r-sapphire, J. Vac. Sci. and Tech. B, 27, 1620 (2009).

[4.17] S. C. Seel, C. V. Thompson, S. J. Hearne, and J. A. Floro, Tensile stress evolution during deposition of Volmer–Weber thin films, J.

Appl. Phys., 88, 7079 (2000).

[4.18] L. B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press, (2004).

[4.19] P.R. Guduru, E. Chason, L.B. Freund, Mechanics of compressive stress evolution during thin film growth, J. Mech. Phys. Solids, 51, 2127 (2003).

[4.20] J. Smalc-Koziorowska, G. Tsiakatouras, A. Lotsari, A.

Georgakilas, and G. P. Dimitrakopulos, The defect character of GaN growth on r-plane sapphire, J. Appl. Phys., 107, 073525 (2010).

[4.21] S.K. Han, S.K. Hong, J.W. Lee, J.Y. Lee, J.H. Song, Y.S. Nam, S.K. Chang, T. Minegishi, T. Yao, Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrates

125

by plasma-assisted molecular-beam epitaxy, J. Cryst. Growth, 309, 121 (2007).

[4.22] J.-M. Chauveau, P. Vennéguès, M. Laügt, C. Deparis, J.

Zuniga-Perez, and C. Morhain, Interface structure and anisotropic strain relaxation of nonpolar wurtzite

( 11 2 0 )

and

( 10 1 0 )

orientations: ZnO epilayers grown on sapphire, J. Appl. Phys., 104, 073535 (2008).

[4.23] B. H. Kong, H. K. Cho, K. M. Song, D. H. Yoon, Effect of vicinal off-cut substrates on the basal stacking fault density in nonpolar a-GaN epilayers, J. Cryst. Growth, 328, 1 (2011).

[4.24] G. P. Dimitrakopulos, Interfacial sources of extended defects in nonpolar and semipolar III-Nitride semiconductors, J. Phys. Conf.

Ser., 281, 012012 (2011).

[4.25] W. M. Yim and R. J. Paff, Thermal expansion of AlN, sapphire, and silicon, J. Appl. Phys., 45, 1456 (1974).

[4.26] CINDAS LLC, Thermophysical Properties of Matter Database 7, (2011). https://cindasdata.com/Applications/TPMD/

[4.27] H.Sawada, R. Wang, A. W. Sleight, An electron density residual study of zinc oxide, J. Solid State Chem., 122, 148 (1996).

[4.28] J.-M. Chauveau, C. Morhain, B. Lo, B. Vinter, P. Vennéguès, M.

Laügt, D. Buell, M. Tesseire-Doninelli, G. Neu, Growth and

characterization of A-plane ZnO and ZnCoO based heterostructures, Appl. Phys. A, 88, 65 (2007).

[4.29] J. Fallert, R. Hauschild, F. Stelzl, A. Urban, M. Wissinger, H.

Zhou, C. Klingshirn, and H. Kalt, Surface-state related luminescence in ZnO nanocrystals, J. Appl. Phys., 101, 073506 (2007).

[4.30] M. Schirra, R. Schneider, A. Reiser, G.M. Prinz, M. Feneberg, J.

Biskupek, U. Kaiser, C.E. Krill, K. Thonke, and R. Sauer, Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide, Phys. Rev. B., 77, 125215 (2008).

[4.31] B. Sieber, A. Addad, S. Szunerits, and R. Boukherroub, Stacking faults-induced quenching of the UV luminescence in ZnO, J. Phys.

Chem. Lett., 1 , 3033 (2010).

126