• 沒有找到結果。

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS

6.2 Future Works

In mixed-voltage I/O interfaces, the effective ESD protection design has been proposed and verified in this thesis. But, for some mixed-voltage circuit applications, the power supply voltage may exceed the ordinary VDD of the process to drive a high-voltage output signal.

Therefore, it is required to design the high-voltage-tolerant power-rail ESD clamp circuit with

low-voltage devices but without suffering the gate-oxide reliability issue. In the high-voltage-tolerant power-rail ESD clamp circuit, the standby leakage current between the power rails is an important concern, especially when the IC is operating at high-temperature environment. In high-voltage CMOS technology, the total holding voltage of the stacked-device structure can be designed higher than the supply voltage to avoid the latchup or latchup-like issues in high-voltage CMOS ICs. But, the layout area of the stacked-device structure will increase as compared to that of the single device, especially for high ESD robustness requirement. The design of new device with the characteristics of both high holding voltage and high ESD robustness from the structure design or process modification will be a useful solution. In nanoscale CMOS technology, the ESD protection design for the charged-device model (CDM) ESD event will be another challenge to protect the ultra-thin gate oxide, especially for the SOC applications with a large chip area. Such ESD topics will be the continual future works for research.

REFERENCES

[1] ESD Association Standard Test Method ESD STM5.1-2001, for Electrostatic Discharge Sensitivity Testing – Human Body Model (HBM) – Component Level, 2001.

[2] A. Wang, On-Chip ESD Protection for Integrated Circuits, Boston, Kluwer, 2001.

[3] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, 2nd Edition, John Wiley & Sons, Ltd., England, 2002.

[4] S. Voldman, ESD Physics and Devices, John Wiley & Sons, Ltd., England, 2004.

[5] C. Duvvury, R. Rountree, and O. Adams, “Internal chip ESD phenomena beyond the protection circuit,” IEEE Trans. on Electron Devices, vol. 35, pp. 2133-2139, 1988.

[6] C. Johnson, T. J. Maloney, and S. Qawami, “Two unusual HBM ESD failure mechanisms on a mature CMOS process,” in Proc. of EOS/ESD Symp., 1993, pp.

225-231.

[7] V. Puvvada and C. Duvvury, “A simulation study of HBM failure in an internal clock buffer and the design issue for efficient power pin protection strategy,” in Proc. of EOS/ESD Symp., 1998, pp. 104-110.

[8] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Trans. on Electron Devices, vol. 46, pp. 173-183, 1999.

[9] T. Furukawa, D. Turner, S. Mittl, M. Maloney, R. Serafin, W. Clark, J. Bialas, L.

Longenbach, and J. Howard, “Accelerated gate-oxide breakdown in mixed-voltage I/O circuits,” in Proc. of IEEE Int. Reliability Physics Symp., 1997, pp. 169-173.

[10] E. Takeda and N. Suzuki, “An empirical model for device degradation due to hot-carrier injection,” IEEE Electron Device Letters, vol. 4, pp. 111-113, 1983.

[11] S. Voldman, “ESD protection in a mixed voltage interface and multirail disconnected power grid environment in 0.5- and 0.25-µm channel length CMOS technologies,” in Proc. of EOS/ESD Symp., 1994, pp. 125-134.

[12] S. Dabral and T. J. Maloney, Basic ESD and I/O Design, John Wiley & Sons, Inc., New York, 1998.

[13] M. Hargrove, S. Crowder, E. Nowak, R. Logan, L. Han, H. Ng, A. Ray, D. Sinitsky, P.

Smeys, F. Guarin, J. Oberschmidt, E. Crabbe, D. Yee, and L. Su, “High-performance sub-0.08-µm CMOS with dual gate oxide and 9.7-ps inverter delay,” in Tech. Dig. of IEDM, 1998, pp. 627-630.

[14] S. Poon, C. Atwell, C. Hart, D. Kolar, C. Lage, and B. Yeargain, “A versatile 0.25-µm CMOS technology,” in Tech. Dig. of IEDM, 1998, pp. 751-754.

[15] M. Takahash, T. Sakurai, K. Sawada, K. Nogami, M. Ichida, and K. Matsud, “3.3V-5V compatible I/O circuit without thick gate oxide,” in Proc. of IEEE Custom Integrated Circuits Conf. (CICC), 1992, pp. 23.3.1–23.3.4.

[16] M. J. M. Pelgrom and E. C. Dijkmans, “A 3/5 V compatible I/O buffer,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 823-825, 1995.

[17] J. Conner, D. Evans, G. Braceras, J. Sousa, W. Abadeer, S. Hall, and M. Robillard,

“Dynamic dielectric protection for I/O circuits fabricated in a 2.5-V CMOS technology interfacing to a 3.3-V LVTTL bus,” in Tech. Dig. of Int. Symp. on VLSI Circuits, 1997, pp. 119-120.

[18] G. Singh and R. Salem, “High-voltage-tolerant I/O buffers with low-voltage CMOS process,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 1512-1525, 1999.

[19] H. Sanchez, J. Siegel, C. Nicoletta, J. Nissen, and J. Alvarez, “A versatile 3.3/2.5/1.8-V CMOS I/O driver built in a 0.2-µm 3.5-nm Tox 1.8-V CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 1501-1511, 1999.

[20] A. J. Annema, G. Geelen, and P. De Jong, “5.5-V I/O in a 2.5-V 0.25-µm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 528-538, 2001.

[21] C.-H. Chuang and M.-D. Ker, “Design on mixed-voltage-tolerant I/O interface with novel tracking circuits in a 0.13-µm CMOS technology,” in Proc. of IEEE Int. Symp.

on Circuits and Systems, 2004, pp. 577-580.

[22] W. Anderson and D. Krakauer, “ESD protection for mixed-voltage I/O using nMOS transistors stacked in a cascode configuration,” in Proc. of EOS/ESD Symp., 1998, pp.

54-71.

[23] J. Miller, M. Khazhinsky, and J. Weldon, “Engineering the cascoded nMOS output buffer for maximum Vt1,” in Proc. of EOS/ESD Symp., 2000, pp. 308-317.

[24] M.-D. Ker, H.-C. Hsu, and J.-J. Peng, “ESD Implantation for sub-quarter-micron CMOS technology to enhance ESD robustness,” IEEE Trans. on Electron Devices, vol.

50, pp. 2126-2134, 2003.

[25] V. A. Vashchenko, A. Concannon, M. Ter-Beek, and P. Hopper, “Physical limitation of the cascoded snapback nMOS ESD protection capability due to the non-uniform turn-off,” IEEE Trans. on Device and Materials Reliability, vol. 4, pp. 281-291, 2004.

[26] J.-H. Lee, J.-R. Shih, Y.-H. Wu, and T.-C. Ong, “The failure mechanism of high

voltage tolerance IO buffer under ESD,” in Proc. of IEEE Int. Reliability Physics Symp., 2003, pp. 269-276.

[27] M.-D. Ker, K.-H. Lin, and C.-H. Chuang, “On-chip ESD protection design with substrate-triggered technique for mixed-voltage I/O circuits in subquarter-micrometer CMOS process,” IEEE Trans. on Electron Devices, vol. 51, pp. 1628-1635, 2004.

[28] S. Shigematsu, S. mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, “A 1-V high-speed MTCMOS circuit scheme for power-down application circuits,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 861-869, 1997.

[29] J. M. Bessolo and G. Krieger, “ESD protection circuit and method for power-down application,” USA patent # 5229635, 1993.

[30] J. Lin, C. Duvvury, B. Haroun, I. Oguzman, and A. Somayaji, “A fail-safe ESD protection circuit with 230 fF linear capacitance for high-speed / high-precision 0.18 µm CMOS I/O application,” in Tech. Dig. of IEDM, 2002, pp. 349-352.

[31] M.-D. Ker and K.-H. Lin, “ESD protection design for IC with power-down-mode operation,” in Proc. of IEEE International Symposium on Circuits and Systems, 2004, pp. 717-720.

[32] M.-D. Ker and K.-H. Lin, “Design on ESD protection scheme for IC with power-down-mode operation,” IEEE Journal of Solid-State Circuits, vol. 39, pp.

1378-1382, 2004.

[33] K.-H. Lin and M.-D. Ker, “Electrostatic discharge protection scheme without leakage current path for CMOS IC operating in power-down-mode condition on a system board,” Journal of Microelectronics Reliability, in press, 2005.

[34] M. P. J. Mergens, W. Wilkening, S. Mettler, H. Wolf, A. Stricker, and W. Fichtner,

“Analysis of lateral DMOS power devices under ESD stress conditions,” IEEE Trans.

on Electron Devices, vol. 47, pp. 2128-2137, 2000.

[35] C. Duvvury, F. Carvajal, C. Jones, and D. Briggs, “Lateral DMOS design for ESD robustness,” in Tech. Dig. of IEDM, 1997, pp. 375-378.

[36] C. Duvvury, J. Rodriguez, C. Jones, and M. Smayling, “Device integration for ESD robustness of high voltage power MOSFETs,” in Tech. Dig. of IEDM, 1994, pp.

407-410.

[37] J.-H. Lee, J.-R. Shih, C.-S, Tang, K.-C. Liu, Y.-H. Wu, R.-Y. Shiue, T.-C. Ong, Y.-K.

Peng, and J.-T. Yue, “Novel ESD protection structure with embedded SCR LDMOS for smart power technology,” in Proc. of IEEE Int. Reliability Physics Symp., 2002, pp.

156-161.

[38] V. De Heyn, G. Groeseneken, B. Keppens, M. Natarajan, L. Vacaresse, and G.

Gallopyn, “Design and analysis of new protection structures for smart power technology with controlled trigger and holding voltage,” in Proc. of IEEE Int.

Reliability Physics Symp., 2001, pp. 253-258.

[39] G. Bertrand, C. Delage, M. Bafleur, N. Nolhier, J. Dorkel, Q. Nguyen, N. Mauran, D.

Tremouilles, and P. Perdu, “Analysis and compact modeling of a vertical grounded-base n-p-n bipolar transistor used as ESD protection in a smart power technology,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 1373-1381, 2001.

[40] E. Chwastek, “A new method for assessing the susceptibility of CMOS integrated circuits to latch-up: the system-transient technique,” in Proc. of EOS/ESD Symp., 1989, pp. 149-155.

[41] R. Lewis and J. Minor, “Simulation of a system level transient-induced latchup event,”

in Proc. of EOS/ESD Symp., 1994, pp. 193-199.

[42] Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test, International Standard IEC 61000-4-2, 1995.

[43] M.-D. Ker and Y.-Y. Sung, “Hardware / firmware co-design in an 8-bits microcontroller to solve the system-level ESD issue on keyboard,” in Proc. of EOS/ESD Symp., 1999, pp. 352-360.

[44] M.-D. Ker and K.-H. Lin, “Double snapback characteristics in high-voltage nMOFETs and the impact to on-chip ESD protection design,” IEEE Electron Device Letters, vol.

25, pp. 640-642, Sept. 2004.

[45] K.-H. Lin and M.-D. Ker, “Design on latchup-free power-rail ESD clamp circuit in high-voltage CMOS ICs,” in Proc. of EOS/ESD Symposium, 2004, pp. 265-272.

[46] M.-D. Ker and K.-H. Lin, “The impact of low-holding-voltage issue in high-voltage CMOS technology and the design of latchup-free power-rail ESD clamp circuit for LCD driver ICs,” revised by IEEE Journal of Solid-State Circuits.

[47] A. Chatterjee and T. Polgreen, “A low-voltage triggering SCR for on-chip ESD protection at output and input pads,” IEEE Trans. on Electron Devices, vol. 12, pp.

21-22, 1991.

[48] M.-D. Ker, C.-Y. Wu, H.-H. Chang, and T.-S. Wu, “Complementary-LVTSCR ESD protection circuit for submicron CMOS VLSI/ULSI,” IEEE Trans. on Electron Devices, vol. 43, pp. 588-598, 1996.

[49] A. Wang and C.-H. Tsay, “On a dual-polarity on-chip electrostatic discharge protection structure,” IEEE Trans. on Electron Devices, vol. 48, pp. 978-984, 2001.

[50] M. Mergens, C. Russ, K. Verhaege, J. Armer, P. Jozwiak, R. Mohn, B. Keppens, and C.

Trinh, “Diode-triggered SCR (DTSCR) for RF-ESD protection of BiCMOS SiGe HBTs and CMOS ultra-thin gate oxides,” in Tech. Dig. of IEDM, 2003, pp. 515-518.

[51] M.-D. Ker and K.-C. Hsu, “Native-NMOS-triggered SCR (NANSCR) for ESD protection in 0.13-µm CMOS integrated circuits,” in Proc. of IEEE Int. Reliability Physics Symp., 2004, pp. 381-386.

[52] M.-D. Ker and H.-H. Chang, “How to safely apply the LVTSCR for CMOS whole-chip ESD protection without being accidentally triggered on,” in Proc. of EOS/ESD Symp., 1998, pp. 72-85.

[53] M.-D. Ker and W.-Y. Lo, “Methodology on extracting compact layout rules for latchup prevention in deep-submicron bulk CMOS technology,” IEEE Trans. Semiconductor Manufacturing, vol. 16, pp. 319-334, 2003.

[54] K.-H. Lin and M.-D. Ker, “ESD protection design for I/O cells in sub-130-nm CMOS technology with embedded SCR structure,” in Proc. of IEEE International Symposium on Circuits and Systems, 2005, in press.

[55] M.-D. Ker and K.-H. Lin, “ESD protection design for I/O cells with embedded SCR structure as power-rail ESD clamp device in nanoscale CMOS technology,” submitted to IEEE Journal of Solid-State Circuits.

[56] M.-D. Ker, T.-Y. Chen, C.-Y. Wu, H. Tang, K.-C. Su, and S.-W. Sun, “Novel input ESD protection circuit with substrate-triggering technique in a 0.25-µm shallow-trench-isolation CMOS technology,” in Proc. of IEEE Int. Symp. on Circuits and Systems, 1998, vol. 2, pp. 212-215.

[57] C. Duvvury, S. Ramaswamy, A. Amerasekera, R. Cline, B. H. Andresen, and V. Gupta,

“Substrate pump nMOS for ESD protection applications,” in Proc. of EOS/ESD Symp., 2000, pp. 7-17.

[58] M.-D. Ker and T.-Y. Chen, “Substrate-triggered technique for on-chip ESD protection design in a 0.18-µm salicided CMOS process,” IEEE Trans. Electron Devices, vol. 50, pp. 1050-1057, 2003.

[59] J. Smith, “A substrate triggered lateral bipolar circuit for high-voltage tolerant ESD protection applications,” in Proc. of EOS/ESD Symp., 1998, pp. 63-71.

[60] M.-D. Ker and C.-H. Chuang, “ESD protection design for mixed-voltage CMOS I/O

buffers,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 1046-1055, 2002.

[61] S. Voldman and G. Gerosa, “Mixed-voltage interface ESD protection circuits for advanced microprocessors in shallow trench and LOCOS isolation CMOS technologies,” in Tech. Dig. of IEDM, 1994, pp. 277-280.

[62] S. Voldman, G. Gerosa, V. Gross, S. Dickson, N. Furkay, and J. Slinkman, “Analysis of snubber-clamped diode-string mixed voltage interface ESD protection network for advanced microprocessors,” in Proc. of EOS/ESD Symp., 1995, pp. 43-61.

[63] M. Tong, R. Gauthier, and V. Gross, “Study of gated PNP as an ESD protection device for mixed-voltage and hot-pluggable circuit applications,” in Proc. of EOS/ESD Symp., 1996, pp. 280-284.

[64] T. Maloney and S. Dabral, “Novel clamp circuits for IC power supply protection,” in Proc. of EOS/ESD Symp., 1995, pp. 1-12.

[65] E. R. Worley, R. Gupta, B. Jones, R. Kjar, C. Nguyen, and M. Tennyson, “Sub-micron chip ESD protection schemes which avoid avalanching junctions,” in Proc. of EOS/ESD Symp., 1995, pp. 13-20.

[66] C.-Y. Huang, W.-F. Chen, S.-Y. Chuan, F.-C. Chiu, J.-C. Tseng, I.-C. Lin, C.-J. Chao, L.-Y. Leu, and M.-D. Ker, “Design optimization of ESD protection and latchup prevention for a serial I/O IC,” Microelectronics Reliability, vol. 44, pp. 213-221, 2004.

[67] W. Morris, “Latchup in CMOS,” in Proc. of IEEE Int. Reliability Physics Symp., 2003, pp. 76–84.

[68] W.-J. Chang and M.-D. Ker, “Layout optimization on low-voltage-triggered PNP devices for ESD protection in mixed-voltage I/O interfaces,” in Proc. of Int. Symp. on Physical and Failure Analysis of Integrated Circuits, 2004, pp. 213-216.

[69] M.-D. Ker, T.-Y. Chen, C.-Y. Wu, and H.-H. Chang, “ESD protection design on analog pin with very low input capacitance for high-frequency or current-mode applications,”

IEEE Journal of Solid-State Circuits, vol. 35, pp. 1194-1199, 2000.

[70] C.-H. Chen, Y.-K. Fang, C.-C. Tsai, S. Tu, K.-L. Chen, and M.-C. Chang, “High voltage tolerant ESD design for analog applications in deep submicron CMOS technologies,” in Proc. of IEEE Custom Integrated Circuits Conf., 2002, pp. 89-92.

[71] H.-H. Chang, M.-D. Ker, K.-T. Lee, and W.-H. Huang, “Output ESD protection using dynamic-floating-gate arrangement,” USA Patent # 6034552, 2000.

[72] M.-D. Ker and C.-H. Chuang, “ESD implantations in 0.18-µm salicided CMOS technology for on-chip ESD protection with layout consideration,” in Proc. of Int. Symp.

on Physical and Failure Analysis of Integrated Circuits, 2001, pp. 85-90.

[73] T. Li, C.-H. Tsai, E. Rosenbaum, and S.-M. Kang, “Substrate resistance modeling and circuit-level simulation of parasitic device coupling effects for CMOS I/O circuits under ESD stress,” in Proc. of EOS/ESD Symp., 1998, pp. 281-289.

[74] X. Y. Zhang, K. Banerjee, A. Amerasekera, V. Gupta, Z. Yu, and R.W. Dutton,

“Process and layout dependent substrate resistance modeling for deep sub-micron ESD protection devices,” in Proc. of IEEE Int. Reliability Physics Sym., 2000, pp. 295–303.

[75] T. J. Maloney and N. Khurana, “Transmission line pulsing techniques for circuit modeling of ESD phenomena,” in Proc. of EOS/ESD Symp., 1985, pp. 49-54.

[76] M.-D. Ker, “Area-efficient VDD-to-VSS ESD clamp circuit by using substrate-triggering field-oxide device (STFOD) for whole-chip ESD protection,” in Proc. of Int. Symp. on VLSI Technology, Systems, and Applications, 1997, pp. 69-73.

[77] M.-D. Ker, “Area-efficient VDD-to-VSS ESD protection circuit,” USA patent # 5744842, 1998.

[78] T.-Y. Chen and M.-D. Ker, “Investigation of the gate-driven effect and substrate-triggered effect on ESD robustness of CMOS devices,” IEEE Trans. on Device and Materials Reliability, vol. 1, pp. 190-203, 2001.

[79] S. M. Sze, Physics of Semiconductor Devices, Second ed., New York: Wiley, 1981.

[80] I. Morgan, C. Hatchard, and M. Mahanpour, “Transient latch-up using as improved bi-polar trigger,” in Proc. of EOS/ESD Symp., 1999, pp. 190-202.

[81] M.-D. Ker and C.-Y. Wu, “Modeling the positive-feedback regenerative process of CMOS latchup by a positive transient pole method: Part I - theoretical derivation,”

IEEE Trans. on Electron Devices, vol.42, pp. 1141-1148, 1995.

[82] M.-D. Ker and K.-C. Hsu, “Latchup-free ESD protection design with complementary substrate-triggered SCR devices,” IEEE Journal of Solid-State Circuits, vol. 38, pp.

1380-1392, 2003.

簡 歷

姓 名:林昆賢

性 別:男

出生日期:民國62年6月25日

出 生 地:台灣省屏東縣

住 址:屏東縣萬巒鄉成德村恭寬路2號

學 歷:

國立交通大學電子工程系畢業 (81年9月~85年6月)

國立交通大學電子研究所碩士班畢業 (85年9月~87年6月)

國立交通大學電子研究所博士班 (90年9月入學)

論文名稱:適用於高低壓共容輸入輸出介面之積體電路靜電放電防護設 計

ESD Protection Designs for Mixed-Voltage I/O Interfaces in CMOS Integrated Circuits

PUBLICATION LIST

(A) Referred Journal Papers:

[1] Ming-Dou Ker and Kun-Hsien Lin, “Design on ESD protection scheme for IC with power-down-mode operation,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1378-1382, Aug. 2004.

[2] Ming-Dou Ker and Kun-Hsien Lin, “Double snapback characteristics in high-voltage nMOFETs and the impact to on-chip ESD protection design,” IEEE Electron Device Letters, vol. 25, no. 9, pp. 640-642, Sept. 2004.

[3] Ming-Dou Ker, Kun-Hsien Lin, and Chien-Hui Chuang, “On-chip ESD protection design with substrate-triggered technique for mixed-voltage I/O circuits in subquarter-micrometer CMOS process,” IEEE Trans. on Electron Devices, vol. 51, no. 10, pp. 1628-1635, Oct. 2004.

[4] Kun-Hsien Lin and Ming-Dou Ker, “Electrostatic discharge protection scheme without leakage current path for CMOS IC operating in power-down-mode condition on a system board,” Journal of Microelectronics Reliability, in press, 2005.

[5] Ming-Dou Ker, Kun-Hsien Lin, and Che-Hao Chuang, “MOS-bounded diodes for on-chip ESD protection in deep submicron CMOS process,” IEICE Trans. on Electronics, in press, 2005.

[6] Ming-Dou Ker and Kun-Hsien Lin, “The impact of low-holding-voltage issue in high-voltage CMOS technology and the design of latchup-free power-rail ESD clamp circuit for LCD driver ICs,” revised by IEEE Journal of Solid-State Circuits.

[7] Ming-Dou Ker and Kun-Hsien Lin, “ESD protection design for I/O cells with embedded SCR structure as power-rail ESD clamp device in nanoscale CMOS technology,” submitted to IEEE Journal of Solid-State Circuits.

[8] Ming-Dou Ker and Kun-Hsien Lin, “Overview on electrostatic discharge protection designs for mixed-voltage I/O interfaces: design concept and circuit implementations,” submitted to IEEE Trans. on Circuits and Systems I.

(B) International Conference Papers:

[1] Ming-Dou Ker, Kun-Hsien Lin, and Che-Hao Chuang, “MOS-bounded diodes for on-chip ESD protection in a 0.15-µm shallow-trench-isolation salicided CMOS

process,” in Proc. of International Symposium on VLSI Technology, Systems, and Applications, 2003, pp. 84-87.

[2] Ming-Dou Ker and Kun-Hsien Lin, “ESD protection design for IC with power-down-mode operation,” in Proc. of IEEE International Symposium on Circuits and Systems, 2004, pp. 717-720.

[3] Kun-Hsien Lin and Ming-Dou Ker, “Design on latchup-free power-rail ESD clamp circuit in high-voltage CMOS ICs,” in Proc. of EOS/ESD Symposium, 2004, pp.

265-272.

[4] Kun-Hsien Lin and Ming-Dou Ker, “ESD protection design for I/O cells in sub-130-nm CMOS technology with embedded SCR structure,” in Proc. of IEEE International Symposium on Circuits and Systems, 2005, in press.

(C) Local Conference Papers:

[1] Kun-Hsien Lin and Ming-Dou Ker, “Whole-chip ESD protection design for IC with power-down application,” in Proc. of Taiwan ESD Conference, 2003, pp. 142-147.

[2] Kun-Hsien Lin and Ming-Dou Ker, “Latchup-free power-rail ESD clamp circuit in high-voltage CMOS ICs ,” in Proc. of Taiwan ESD Conference, 2004, pp. 25-30.

(D) Patents:

[1] 柯明道、林昆賢, “靜電放電防護電路,” 中華民國發明專利, Nov. 2004. (專利證 書號 # 224391)。

[2] 柯明道、林昆賢, “可避免鎖住效應之高壓積體電路電源間靜電放電箝制電路,”

中華民國發明專利,申請中。

[3] Ming-Dou Ker and Kun-Hsien Lin, “ESD protection circuit for IC with power-down-mode operation,” USA patent pending.

[4] Ming-Dou Ker and Kun-Hsien Lin, and Geeng-Lih Lin, “Electrostatic discharge protection device,” USA patent pending.

[5] Ming-Dou Ker and Kun-Hsien Lin, “A silicon controlled rectifier for the electrostatic discharge protection,” ROC and USA patent pending.

[6] Ming-Dou Ker and Kun-Hsien Lin, “ESD protection design against charge-device model ESD events,” ROC and USA patent pending.