國中整數加減法學習之多媒體教材運用探討

全文

(1)









































































































































































mpchen@ntnu.edu.tw

















                ! " # $%&' ( ) * + , -  . /88 0 1 2 3 4 56 7 8      9 /  : 7;<=> ? @  ;-& AB C D E 5' F G H 9 /G  IH  -  J K L M! " # $N O PO Q' (R   : 7 ;S T U V => ? @ ;G   S T U V H  W! " # $ X ' (R G  S T U V H       ' (AY S T + , W Z ) * [\]^ : 7   _ `  ab c d e &) * [f H   g h i b c ajk -  l! " # $    m n ? @   

1.

















   ^ o    pq r O Q s t u v w x  y z [{ |  -} ~ [ \ ! " # $%R pw x  €   /‚  ƒ „ … f c t N O † ‡X ˆ ƒ ‰ ŠX c ‹ Œ  €  Ž   f  /‘ ’ * ƒ “ ” • – R [— O Q6 7R - - ˜ Y $™ š O Q› œ  ž V ŸQ 9    O Q¡ N ^ o w x s t -¢ £ ¤ ¥ 9 N O „ … ¦ §¨© ª « [œ ¬ ­ ® ¯ O Q^ o Ž °±  • ² ³ ´ µ ¶    · ¸ƒ Œ ª « [2]-¹ º  L » ˆ ¼† ‡¨©Ž ½ ¾ ¿ÀÁ Â Ã Ä Å  Æ Œ Ç M-È Â É Ê Ë k ¿Ì Í Î Ï Ð N ŸQ È ^ Ñ Ò 4 Ó È 5[ ԃ Õ Ö× Ø R „ … ¦ §X  Ù O  ˆ É Ê Ë k Ú ¿ Û † ‡Ü Œ … Š[3]-É Ê   Œ a : 7Ý I8„ … † ‡P7) ^ o Þ h Šß Ý  V à á 7° ' (Iâ ã  € † ‡ad ä + , [5][7][10][21][23]åÀ      æ Ç M! " # &Œ … † ‡Àjk  ! " # † ‡N O ç " O Q6 7' (è        V  ! " # $%' ( ) *

-2.

































2.1 







2.1.1  













   (multimedia instructions)ƒ !é   > ê<=ë <+ Í  ì í î ï ð æ Õ ñ ò ó Àç _ (K [9][16]f  ô õ  åÇ M òó ö ÷ aª « ø J -  _ `   6 7 ˆ  } ~ À ù ú N û % (dual-coding theory)æ O ü   ³ ý jk  [1][5][10][18]-ù ú N û [8]› þ Ð N ^ o     9  :  Ö}  ƒ  > (verbal) Ö }  ƒ —  > (nonverbal) Ö- Ð N ^ o › œ 9 '  h PÞ h Ð N ÖMayer[16]à ÷ ù ú N û &   o = À  ù ú N û V  Ë k  ³ =1 å-=1 ù ú N û &   o

(2)

  Mayer /}    Ö  œ  k “ ”   Ð N ^ o 9  / (selecting)< ; (organizing)P!é (integrating)-   Ð N ^ o      Ð N  ! l > Æ  • – "   > êæ Ð N <=Í Æ  • – "    =Í æ Ð N <; å > êr  > # D ­ $<; å =Í r =Í # D ­ $ % & 8 > # D ­ $<=Í # D ­ $P' ( · ¸! é r ) * • – À “ ”    # D ¨ ©(mental representation)-' (P   Ö  <; <!é   Ð N ^ o a+ , - [   Ð N ^ o P Ç M  [6][18][26][30]I ' ( · ¸[1][17][18][20]ƒ . .

-2.1.2       











































   / 0 1 8a(;  2 ú Àà 3 % 4 5 0 [15][19][31] ÀÞ h Š6 ä 7 8 ¿À9 : ­ ; < 4 = > æ Ç M? @  † ‡A 4 Þ h Š €  # ‹ B „ … ¦ §½ ¾ /Œ  È 5 · ‚ C -Æ  • – &‚ C  ž [31]¿" 9 /(1) òó D t E * F

/ ò · ‚ C %(intrinsic cognitive load)W(2)

 òó À   Ç M1 w x o * 

‚ C F/ G  · ‚ C %(extraneous cognitive

load)W(3)Á Â 7 8 ÀH I x Î J òó

 · ^ o Ž K ­ “ L F/ M N  · ‚ C %

(germane cognitive load)-O, 7 8 P ¿À

Q H G R  · ‚ C  ˆg jk Î J V  òó è S _ T K ­ &“ L

-2.1.3        

















































  U V ^ o  W à X `  o Y < t E * <   IZ [  \  î ¿ÀB C  ] ^ Po * æ X ` _ ` 6 7g ]^  ¯ a é   · b œ å7 8  æ U V c o òó 7 8  Aa(1)c o òó d Œ ( e f ' ( · ¸W(2)ac G W(3) û c o òó ƒ g R 9 h 8' i X j W(4)c o òó ƒ œ k  · l m Pc G n \ ŸQO _ o p W(5)¢ œ o p Ž q n Œ a Ý ÀI¢ Œ aG * 7° ˆh ¿ U V   [22]-M% pÛ    ƒ Àr <Ù s I  /›  $) t [u æ u v w ¯  õ x M 6 7› U [27]-ž ´ ¯   y  × o æ Ë k Oˆ À / # ­  Àà á '

(-2.2    

























2.2.1      !































!

!

!

   O Q¿9 ' ŸQ¨© ŸQO _ ŸQ ¨©z 9 /ŸQ½ {  ŸQ!é ŸQO _ g ¿9 /O Q8 | <} U PO Q~ ` -  L M   O QR ¤ ' i  ž  h ÷ ŸQN O ¨ ©[ ƒ ŸQ¬ O [11][14]g Z ƒ  R V  N O    ƒ c s t [ V 8 X  • –  ä Ac ó E -É Ê ¿ /  Æ Œ  > ê<=Í æ Ç M · ¸    8„ … · ¸Š/Œ  È 5 k “ L  † ‡- ‡-  O Q6 7 ¯ pk  Û  y  ß ` O Ql m @ ³ | =<€ ŠŸQ<  ‚  ƒ Q$<„ E <L M - I¡ N î À k à á O Q-P ƒ O Q^ o q r s t ˆ p ·  …  ý  l m O _ [13][28] † ‹ 8år l m   O Q5 0   -ž ´ ¯ ‡  k O Ql m G g   õ ³ ý a( O Ql m [  a(  O Ql m o p ¿À]^ m n ? @ æ q n

-2.2.2     "  # $ % &

























"

"

"







#

#

#

$

$

$

%

%

%

&

&

&

   ˆ ‰  Á  m n ? @ æ  % Š ‹  · o p ƒ ˜ aŒ   m n ? @ Š  æ  ƒ b c Ž  ­  [12][24]WaÈ 5æ  ƒ a( ­  [4]-  m n ? @ 7 8 ƒ à 3 ? @ è Ç M !  O Q^ o  ‘ õ  4 Ó m n O Q]^  8„ … † ‡Œ … Šjk ’ “ ÷ O _ ŸQ $-m n ? @ ^ o œ ” /• – È 5Ç MŒ … † ‡< à 3 m n ? @ _ ` X — O ü l m q n <à 3 n ŸQŸQ9 ˜ '  ™ ŸQÀ ‚ O _  š

-3.

































    À1 2 3  c o & ! " # $%/

(3)

· ¸‰ ]^ 4 5       I  ! " # $%& ' ( ) * + ,

-3.1 ' (  )

'

'

'

(

(

(







)

)

)

    &… /1 2 3 x   . /› œ      ž3  88 0 Àž3 /Ÿ 0   °9 ¡ /  : 7; => ? @ ;_ ` 4 5¢  G H &£ ` ¤ ƒ B ¥  * Š å¦ E D E 5 9  G H { Y § 45%/G  % & 45%/ H  -  4 5J ¨ & © ‡ 20 ¤  ª o «  &    I     { Y 6 V 45%~55%&(8 )¬   &a(. / 78-  : 7;39¢  19/G  <20 /H  W=> ? @ ; 39 ¢  19/G  <20/H 

-3.2 ' ( # $

'

'

'

(

(

(

#

#

#

$

$

$

    …  ­4 5  $ Ç M ® Œ … † ‡ O QI k &      ! " # $&N O <X <IO Qjk  è  ¢ ) * + , -X ¯ ° /     %I  %-  B ¥       & 9 /  : 7;%I => ? @ ;%-  : 7;ƒ À   : 7 &  _ ` È Â  ® 7| Œ … ŠÇ M! " # $ † ‡õ ]^ ± ²<  <O QI k  ’ “ a(! " #  X $AW=> ? @ ;Aƒ ]^ ¯ O   ? @   _ ` È Â ± ²¯ år

& ® 7| <¯ &à <IO QI k  ’

“ î ! " # X $A-  . &  ¤ B ¥  ³  D E 5´   % E 5' F &{ Y Ò § 45%/G   ;% & 45%/H  ;- ;-   &B ¯ ° / ! " # $' (%I ) * %¢  ! " # $' ( µ ! " # $N O ' (<! " # $X ' (<! " # $O Q' (-) * A µ 7°< ¶ <Ijk

-3.3 ' ( * +

'

'

'

(

(

(

*

*

*

+

+

+

  4 5åÛ    Æ Œ  µ (1) ³  D E 5´   <(2)! " # $§E 5<(3) ! " # $   <(4)! " # $' Z E 5< I(5)) * w ·

-3.3.1 , - . / 0 1 2 3 4 5

,

,

,

-

-

-

.

.

.

/

/

/

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

  E 5 ¸ ¹ º  » ¼ ½ (1991)å2 ¾ ¿  E À  ³  } ~ D Á ­À3  2 ž<9 ;<¡ ` Ë k 6 7&«  -   ÀD E 5& E 59   /  9 ;B ¥

-3.3.2 6  7 8 9 : 1 2

6

6

6







7

7

7

8

8

8

9

9

9

:

:

:

1

1

1

2

2

2

  ! " # $§E 5 à O   … Ä ” ` / c o ' ( · ¸N O o * -  /Å Æ V 4 5§d Œ ( ! " # $c o · ¸[+ , 4 5&J K åa 4 5 ‹ ˆÇ È : É §E 5è 8¢ E 5 ' F  /Ö8 9   &Ê ¯ À

-3.3.3 6  7 8 9 

6

6

6







7

7

7

8

8

8

9

9

9







  ! " # $%&c o òó 9 /  " $%<  # $%<  " # Ë é X %I   Q $%Ì  c o Í ” 7 8 ƒ À   Q$%   8  " $%<  # $%I  " # Ë é X %Î Â x 6 Š  ? @ & Û  ÀÜ Œ    N O ! " # „ … † ‡- ‡-  : 7 %š  FlashÄ  7 8 7 )  ® =4 5^ o  ¯ ' I k  Ï Ð ' ( · ¸< ‘  Ñ & Ç M÷ T c o è O  6 7 o  ¯ ?  : 7  Û    è à  ® 7| 弨! " # ª « Ò õ š  : 7 à 3 O QI k X `   - œ Ÿ ï òó &  | ä Z 1 ÷ M? @ PO Q^ o  ‘ š  Ó Ô   ® R 7Ç M! " # Œ … † ‡   m n ? @ ^ o  ’ “ X $Aè È Â n   ¯ Ï Õ æ Ö Þ ' K % & _ ` Ÿ ï £ À - - => ? @  %› œ ƒ ]^ ¯ O   ? @   _ ` 6 7è a é € × Ä   /Ë k Æ Œ 4 5^ o  ¯ ' I k  Ï Ð ' ( · ¸< ‘  Ñ & Ç M÷ T c

(4)

o è O  6 7 o Ò Â ¯ I k  => ? @  è à  ® =弨! " # ª « õ } } ? @ I k m n  ’ “ X $AÈ Â n  ¯ Ï Õ æ Ö Þ  ' K % & _ ` Ÿ ï £ À

-3.3.4 6  7 8 9  ; 1 2

6

6

6







7

7

7

8

8

8

9

9

9







;

;

;

1

1

1

2

2

2

  ! " # $' Z E 5ƒ  æ £ À  ! " # $%· ¸‰ _ ` 4 56 7&  ' (E 5B ¥ 6 7&òó 2 ¾ À! " # $X P  /› -E 5À  " $%<  # $%<  " # Ë é X %<   Q $%/E 5òó › œ E 5 ! " # $ N O ' (%< ! " # $X ' (%<I !  " # $O Q' (%  ' (- (- ! " # $N O ' (£ À °  /¼ <= ¨< ª î ¨©  > ½ ¾ I> QØ s  › œ ± ‡P: - O ü Ž š  d · ¡ û J K -! " # $X ' (£ À °  /y   ê<¦ §< Ù m X IÚ A d Û Û  -! " # $O Q' (£ À °  /Ü é ¡ N I  O¢ l m O _ 4 Ó x 6 ŸQ&-! " # $' Z E 5Ý * È òR } Þ Ý  5åi & Cronbach α = .797

3.3.5 < = > ?

<

<

<

=

=

=

>

>

>

?

?

?

  ) * w · òó 9 / 7°%<  ¶ %< jk %) * w · Ý * È òR } Þ Ý  5V à á 7°&Cronbach α = .777à á ¶ &Cronbach α = .814

jk & Cronbach α = .827ª w · åi &

Cronbach α= .830

-3.3.6 @ A B C D E

@

@

@

A

A

A

B

B

B

C

C

C

D

D

D

E

E

E

    &4 5 ¥ 9  ß  ! " # $ ' (9   %I ) * 9   %(Àα= .05/S T Á ­)-! " # $' (… à ž ™ Ê ¯  9   À     I /X ¯ ° ! " # $' Z E 5&' F /B ¯ ° è 8! " # § E 5' F  /Ö8 9   &Ê ¯ À 9  _ ` ! " # $N O ' (%9   I ! " # $O Q' (%9   -) * A… à ž ™ ¯ á  9   À     I /X ¯ ° ß   jk %&â $_ ` 9  

-4.









!

!

!

!









"

"

"

"

    › œ Z     (  : 7 <=> ? @ )I (G  <H  ) ]^  ® ­  Ç M ! " # $% Œ … † ‡ ' ( ) * _ ` 9  

-4.1 6  7 8 9    D E

6

6

6







7

7

7

8

8

8

9

9

9



















D

D

D

E

E

E

  ³ ¨1å! " # $N O ' (È Ê ¯  9        ã :   ¤ » S T Á ­(F(1,73) = .038p = .847)› (K  ä      P › (K Ç » S T Á ­(    lF(1,73) = 7.330p = .008W l F(1,73) = 27.849p < .001)-Z     [\  : 7;(mean=6.179)N O ' (R S T U V => ? @ ;(mean=5.631)Z   [\G  (mean=6.697)N O ' ( R S T U V H         (mean=5.113) -¨1 N O ' (&Ê ¯  9   ä œ  SS df MS F Sig.     5.360 1 5.360 6.938 .010  5.663 1 5.663 7.330 .008*     21.516 1 21.516 27.849 .000*      .029 1 .029 .038 .847   56.400 73 .773

4.2 6  7 8 9     D E

6

6

6







7

7

7

8

8

8

9

9

9

























D

D

D

E

E

E

  ³ ¨2å! " # $O Q' (È Ê ¯  9        ã :   ¤ » S T Á ­(F(1,73) = .383p = .538)› (K  ä      P › (K Ç » S T Á ­(    lF(1,73) = 10.144p = .002W l F(1,73) = 46.038p < .001)-Z     [\  : 7;(mean=4.967)O Q' (R S T U V => ? @ ;(mean=4.103)-Z   [\G  (mean=5.902)O Q ' ( R S T U V H         (mean=3.169)

(5)

-¨2 O Q' (&Ê ¯  9   ä œ  SS df MS F Sig.     3.829 1 3.829 2.751 .101  14.121 1 14.121 10.144 .002*     64.085 1 64.085 46.038 .000*      .533 1 .533 .383 .538   101.615 73 1.392

4.3   F G D E













F

F

F

G

G

G

D

D

D

E

E

E

  jk &ä œ ³ ¨3å      &ã :   ¤ » S T Á ­(F(1,73) = .686p= .410)Z     [\    › (K » S T Á ­(F(1,74) = 5.103p = .027)  : 7;(mean=16.72)jk R S T U V => ? @ ;(mean=15.15) - - Z  [\ › (K » S T Á ­(F(1,74) = 4.397p = .039)H   (mean=16.65)jk R S T U V G   (mean=15.18)J K S H   h i À  Ç M 1 b c ajk -¨3   jk â $&¯ á  9   ä œ  SS df MS F Sig.  48.583 1 48.583 5.103 .027*     41.869 1 41.869 4.397 .039*      6.532 1 6.532 .686 .410   704.574 74 9.521

5.









"

"

"

"

!

!

!

!

#

#

#

#

$

$

$

$

    J K &å !³ ¨4å      5 0 æ ¿ÀB ö   (doing mathematics) _ `  ç <è E <¡ N î 6 7_ [ ‚ ƒ ŸQè “ ” · ¸é L ê ¥ 4 5 J K ’ “ ÷ Àæ J û l(1) : 7   æ Ç M ! " # $%&Œ … † ‡jk  ac ^ N O  O Q' (W(2)G  ] ^ 7) Ž ë )  _ ` ! " # $%6 7 ì Ñ i c ^ ' (W(3)]^ : 7    _ ` 6 7) * c /d e W(4) H  ]^  _ ` 6 7ˆ c ajk -¨4   J K å !            >        >    !     >        >    " # $   >       >       ê ¥ 4 5^ o Ií 9   J K å w x ŸQà ÷ æ î “ ï À3 ¤ æ      &«  l(1)Í Þ „ … † ‡ð o ç v O Q 6 7W(2)a( $)   à á 7°W(3)ò · ‚ C Y $Á  7 8 æ ñ ¯ P 7 8 ¿B Q H G  · ‚ C I^ o  O¢ I  M N  · ‚ C    æ 7 8  W(4) ¦ é o * m n ? @ _ ` 7 8 ? @  ˆ“ ï ¿À Û  Fading[25]  ò ƒ  ‹  · o p Ñ i ó ô Û  õ !  ! ? @ æ ? j k 8å· ¸ ö ÷ ø î r & *  Z ¿jk ù » r ŸQO _ 

-6.

%

%

%

%

&

&

&

&

















[1]ú ‘ û (1999)-         ` ü ý  Ï × þ 1 Î Q  8 | 8 | 2 §l NSC88-2520-S-003-005  › -[2]   (1994)- ³   T c o &‘  -                                     1-19 -[3] (1993)-É Ê Ë k T 7 8 ± —  ·  V -      !!!! """"31(1) 55-66

-[4]Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning form examples: Instructional principles from the worked examples research. Review of Educational Research, 70(2), 181-214.

[5]Bagui, S. (1998). Reasons for increased learning using multimedia. Journal of educational multimedia and hypermedia, 7(1), 3-18.

[6]Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293-332.

[7]Choi-koh, S. S. (2000). A problem-solving model of quadratic min values using computer. Journal of Instructional Media, 27(1), 73-82.

[8]Clark, J. M. & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149-210.

[9]Craig, S. D., Gholson, B., & Driscoll, D. M. (2002). Animated pedagogical agents in multimedia educational environments: Effects of agent properties, picture features, and redundancy. Journal of Educational Psychology, 94, 428-434. [10]Iding, M. (2000). Is seeing believing? Features of

effective multimedia for learning science. International Journal of Instructional Media, 27(4),

(6)

403-415.

[11]Knifong, J. D., & Burton, G. M. (1985). Understanding word problems. Arithmetic Teacher, 32(5), 13-17.

[12]LeFevre, J. A., & Dixon, P. (1986). Do written instructions need examples? Cognition and Instruction, 3, 1–30.

[13]Lester, F. K. (1983). Trends and issues in mathematical problem-solving research. In R. Lesh & M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes. New York: Academic Press.

[14]Lewis, A. B. & Mayer, R. E. (1987). Students’ miscomprehension of relational statements in arithmetic word problems. Journal of Educational Psychology, 79(4), 363-371.

[15]Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions. Educational Psychologist, 32, 1-19.

[16]Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.

[17]Mayer, R. E. & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83(4), 484-490.

[18]Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389-401. [19]Mayer, R. E., Steinhoff, K., Bower, G. & Mars, R.

(1995). A generative theory of textbook design: Using annotated illustrations to foster meaningful learning of science text. Educational Technology Research and Development, 43, 31-44.

[20]Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 87, 358-368.

[21]Najjar, L. J. (1996). Multimedia information and learning. Journal of Educational Multimedia and Hypermedia, 5(2), 129-150.

[22]Orr, K. L, Golas, K. C., & Yao, K. (1994). Storyboard development for interactive multimedia training. Journal of Interactive Instruction Development, Winter, 18-31.

[23]Ramadhan, H. A. (2000). Programming by discovery. Journal of Computer Assisted Learning, 16, 83-93.

[24]Recker, M. & Pirolli, P. (1995). Modeling individual differences in learning strategies. Journal of the Learning Sciences, 4(1), 1-38. [25]Renkl, A., & Atkinson, R. K. (2003). Structuring

the transition form examples study to problem solving in cognitive skill acquisition: A cognitive load perspective. Educational Psychologist, 38(1), 15-22.

[26]Rieber, L. (1997). Animation as a distracter to learning. International Journal of Instructional Media, 23(1), 53-57.

[27]Roblyer, M. (1997). Predictions and realities: The impact of the Internet on K-12 education. Learning and Leading with Technology. 24(2), 12-16. [28]Schoenfeld, A. H. (1985). Mathematical problem

solving. New York: Academic Press.

[29]Spires, H. A., Donley, J., & Penrose, A. M. (1990). Prior knowledge activation: Inducing text engagement in reading to learn. Paper presented at the American Educational Research Association, Boston, MA.

[30]Sweller, J. & Chanadler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), 185-233.

[31]Sweller, J., van Merrienboer J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296.

[32]Weinert, F. (1989). The relation between education and development. International journal of educational research, 13(8), 827–948.

數據

Updating...

參考文獻

Updating...