• 沒有找到結果。

一阶线性微分方程组

N/A
N/A
Protected

Academic year: 2021

Share "一阶线性微分方程组"

Copied!
56
0
0

加載中.... (立即查看全文)

全文

(1)~‡©§. 1ÊÙ ˜‚5‡©§| þ°ã²ŒÆA^êÆX March 24, 2010. (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 1 / 49.

(2) 1Ê٘‚5‡©§| .1 <E¥($Ä Áïá/¥<E¥(7/¥$橐§"(ÑÙ§UNé< E¥(K§O9/¥Úå|é<E¥(Š^) ¥($Ч  f mM x d2 x   m 2 =−  3   dt (x2 + y 2 ) 2. (1).   d2 y f mM y    m 2 =− 3 dt (x2 + y 2 m) 2. ùÒ´˜‡¹kü‡™¼ê‡©§|" (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 2 / 49.

(3) 1Ê٘‚5‡©§| .1 <E¥($Ä Áïá/¥<E¥(7/¥$橐§"(ÑÙ§UNé< E¥(K§O9/¥Úå|é<E¥(Š^) ¥($Ч  f mM x d2 x   m 2 =−  3   dt (x2 + y 2 ) 2. (1).   d2 y f mM y    m 2 =− 3 dt (x2 + y 2 m) 2. ùÒ´˜‡¹kü‡™¼ê‡©§|" (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 2 / 49.

(4) 1Ê٘‚5‡©§| .2 Ó ¨Ó . kÓ «+ÚÓ (½¡ )«+)¹3Ә‚¸¥§d u)˜!)kڃpŠ^§ü«+‡Nêþò‘žmCz"Á ïáü«+‡Nêþ‘žmCzêÆ." Ó ˜Ó ü«+ƒpŠ^êÆ.  dx     dt = x(r1 − ax − by). Ù¥d > 0, r. 2. (. (2).   dy   = y(−r2 + cx − dy) dt. "ù´¹kü‡™¼ê‡©§|". > 0, c > 0. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 3 / 49.

(5) 1Ê٘‚5‡©§| .2 Ó ¨Ó . kÓ «+ÚÓ (½¡ )«+)¹3Ә‚¸¥§d u)˜!)kڃpŠ^§ü«+‡Nêþò‘žmCz"Á ïáü«+‡Nêþ‘žmCzêÆ." Ó ˜Ó ü«+ƒpŠ^êÆ.  dx     dt = x(r1 − ax − by). Ù¥d > 0, r. 2. (. (2).   dy   = y(−r2 + cx − dy) dt. "ù´¹kü‡™¼ê‡©§|". > 0, c > 0. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 3 / 49.

(6) 5.1. ˜‚5‡©§|˜„nØ. ˜‡©§| ¡  dx1   = f1 (t, x1 , x2 , · · · , xn )   dt      dx2 = f2 (t, x1 , x2 , · · · , xn )  dt    ··· ···      dxn = fn (t, x1 , x2 , · · · , xn ) dt. (3). ¹kn‡™¼êx , x , · · · , x ˜‡©§|" 1. (. þ°ã²ŒÆA^êÆX). 2. n. ~‡©§. 1ÊÙ. March 24, 2010. 4 / 49.

(7) 5.1. ˜‚5‡©§|˜„nØ. ˜‡©§|) XJ3˜|¼êx (t), x (t), · · · , x (t)§¦3[a, b]þke ¡n‡ªf 1. 2. n. dxi (t) = fi (t, x1 , x2 , · · · , xn ), dt. i = 1, 2, · · · , n. ð¤á§K¡ù|¼ê´˜‡©§|(3)3[a, b]þ˜‡). (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 5 / 49.

(8) 5.1. ˜‚5‡©§|˜„nØ. ˜‡©§|Ï) kn‡?¿~êc , c , · · · , c ) 1. 2. n.  x1 = φ1 (t, c1 , c2 , · · · , cn )    x2 = φ2 (t, c1 , c2 , · · · , cn ) ··· ···    xn = φn (t, c1 , c2 , · · · , cn ). ¡˜‡©§|(3)Ï)" (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 6 / 49.

(9) 5.1. ˜‚5‡©§|˜„nØ. ˜‚5‡©§| kXJ˜‡©§|(3)¥z˜‡f (t, x , x , · · · , x )é¤k™ ¼êÑ´˜g§= i. 1. 2. n.  dx1   = a11 (t)x1 + a12 (t)x2 + · · · + a1n (t)xn + f1 (t)   dt      dx2 = a21 (t)x1 + a22 (t)x2 + · · · + a2n (t)xn + f2 (t)  dt    ··· ···      dxn = an1 (t)x1 + an2 (t)x2 + · · · + ann (t)xn + fn (t) dt. ¡(4)˜‚5‡©§|"Ù¥a m[a, b]þëY" (. þ°ã²ŒÆA^êÆX). ~‡©§. ij , fi (t)(i, j. 1ÊÙ. (4). 3«. = 1, 2, · · · , n). March 24, 2010. 7 / 49.

(10) 5.1. ˜‚5‡©§|˜„nØ. ˜‚5‡©§|•þ/ª. X 0 = A(t)X + F (t). .   · · · a1n (t)  · · · a2n (t)   , F (t) =   ··· ···  · · · ann (t)   x1 (t)  x2 (t)   X(t) =   ···  xn (t). a11 (t) a12 (t)  a21 (t) a22 (t) A(t) =   ··· ··· an1 (t) an2 (t). (. þ°ã²ŒÆA^êÆX). (5). ~‡©§. 1ÊÙ.  f1 (t) f2 (t)   ···  fn (t). March 24, 2010. 8 / 49.

(11) 5.1. ˜‚5‡©§|˜„nØ. ˜‚5‡©§|•þ/ª. X 0 = A(t)X + F (t). .   · · · a1n (t)  · · · a2n (t)   , F (t) =   ··· ···  · · · ann (t)   x1 (t)  x2 (t)   X(t) =   ···  xn (t). a11 (t) a12 (t)  a21 (t) a22 (t) A(t) =   ··· ··· an1 (t) an2 (t). (. þ°ã²ŒÆA^êÆX). (5). ~‡©§. 1ÊÙ.  f1 (t) f2 (t)   ···  fn (t). March 24, 2010. 8 / 49.

(12) ˜‚5‡©§|†p‚5‡©§d   dn x dn−1 x dx + a (t) + · · · + a (t) + an (t)x = f (t) 1 n−1 n n−1 dt dt dt  x(t ) = η , x0 (t ) = η , · · · , x(n−1) (t ) = η 0 1 0 2 0 n  . 0 1 0  0 0 1 X0 =   ··· ··· ··· −an (t) −an−1 (t) −an−2 (t)    X(t0 ) =  . η1 η2 .. .. ··· ··· ··· ···. . 0    0 X +   ···    −a1 (t). 0 0 .. . 0 f (t).    =η . ηn (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 9 / 49.

(13) ˜‚5‡©§|†p‚5‡©§d   dn x dn−1 x dx + a (t) + · · · + a (t) + an (t)x = f (t) 1 n−1 n n−1 dt dt dt  x(t ) = η , x0 (t ) = η , · · · , x(n−1) (t ) = η 0 1 0 2 0 n  . 0 1 0  0 0 1 X0 =   ··· ··· ··· −an (t) −an−1 (t) −an−2 (t)    X(t0 ) =  . η1 η2 .. .. ··· ··· ··· ···. . 0    0 X +   ···    −a1 (t). 0 0 .. . 0 f (t).    =η . ηn (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 9 / 49.

(14) p‚5‡©§|=z ~  3 dx dx d2 x dy   = a (t)x + a (t) + a (t) + b (t)y + b (t) + f1 (t)  1 2 3 1 2  dt3 dt dt2 dt. (6).  2 2    d y = c1 (t)x + c2 (t) dx + c3 (t) d x + d1 (t)y + d2 (t) dy + f2 (t) dt2 dt dt2 dt. ŠC†§-. x = x1 ,. (. þ°ã²ŒÆA^êÆX). dx1 dx2 dy1 = x2 , = x3 ; y = y1 , = y2 dt dt dt. ~‡©§. 1ÊÙ. March 24, 2010. 10 / 49.

(15) p‚5‡©§|=z ~  3 dx dx d2 x dy   = a (t)x + a (t) + a (t) + b (t)y + b (t) + f1 (t)  1 2 3 1 2  dt3 dt dt2 dt. (6).  2 2    d y = c1 (t)x + c2 (t) dx + c3 (t) d x + d1 (t)y + d2 (t) dy + f2 (t) dt2 dt dt2 dt. ŠC†§-. x = x1 ,. (. þ°ã²ŒÆA^êÆX). dx1 dx2 dy1 = x2 , = x3 ; y = y1 , = y2 dt dt dt. ~‡©§. 1ÊÙ. March 24, 2010. 10 / 49.

(16) p‚5‡©§|=z ¹k5‡™¼êx , x , x , y , y ˜‚5‡©§| 1.      . x01 x02 x03 y10 y20. (. . .     =    . 2. 3. 1. 2. 0 1 0 0 0 0 0 1 0 0 a1 (t) a2 (t) a3 (t) b1 (t) b2 (t) 0 0 0 0 1 c1 (t) c2 (t) c3 (t) d1 (t) d2 (t). þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ.      . x1 x2 x3 y1 y2.       +    . March 24, 2010. 0 0 f1 (t) 0 f2 (t). .     . 11 / 49.

(17) 5.1. ˜‚5‡©§|˜„nØ. 3˜5½n A(t)´n × nÝ §F (t)´n‘•þ§§‚Ñ3«m[a, b]þë Y"Kéu«m[a, b]þ?Ûêt 9?˜~ê• þη = (η , η , · · · , η ) §§|X = A(t)X + F (t)3˜ )φ(t)§½Âu‡«m[a, b]þ§ ÷vЩ^‡φ(t ) = η" 1. 2. n. 0 0. T. 0. (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 12 / 49.

(18) ˜àg‚5‡©§|)˜m( àg‚5‡©§| e‚5‡©§|(5)¥F (t) ≡ 0§= X 0 = A(t)X. (7). ¡(7)àg‚5‡©§|"eF (t) 6≡ 0§¡(5)šàg‚5‡ ©§|". (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 13 / 49.

(19) ˜àg‚5‡©§|)˜m( U\n ½n5.2 XJX (t), X (t), · · · , X (t)P´àg‚5‡©§ |(7)m‡)§K§‚‚5|Ü c X (t)´(7))"Ù ¥c , c , · · · , c ´?¿~ê" 1. 2. m. m. i. i. i=1. 1. (. 2. m. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 14 / 49.

(20) ˜àg‚5‡©§|)˜m( •þ¼ê|‚5ƒ'5 X (t), X (t), · · · , X (t)´«m[a, b]þ•þ¼ê§XJ3Ø "~êc , c , · · · , c §¦eªð¤á 1. 2. n. 1. 2. n. c1 X1 (t) + c2 X2 (t) + · · · + cn Xn (t) ≡ 0, t ∈ [a.b]. K¡d|•þ¼ê3«m[a, b]þ‚5ƒ'§ÄK¡ù|¼ê‚5 Ã'". (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 15 / 49.

(21) ˜àg‚5‡©§|)˜m( •þ¼ê|Wronski1ª ¡«m[a, b]þn‡•þ¼ê    X1 (t) =  . x11 (t) x21 (t) .. .. . .      , X2 (t) =   . xn1 (t). x12 (t) x22 (t) .. .. . . x1n (t)   x2n (t)    , · · · , Xn (t) =  ..   . xn2 (t) xnn (t). ¤1ªù|•þ¼êWronski1ª§= . x11 (t) x12 (t) · · ·  x21 (t) x22 (t) · · · W [X1 (t), X2 (t), · · · , Xn (t)] ≡   ··· ··· ··· xn1 (t) xn2 (t) · · · (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ.  x1n (t) x2n (t)   ···  xnn (t). March 24, 2010. 16 / 49.

(22) ˜àg‚5‡©§|)˜m( •þ¼ê‚5ƒ'5O ½n5.3 XJ•þ¼êX (t), X (t), · · · , X (t)3«m[a, b]þ‚5ƒ '§K§‚3[a, b]þWronski1ªðu"" •þ¼ê‚5ƒ'5O ½n5.4 XJ•þ¼êX (t), X (t), · · · , X (t)´§|(7)n‡ )§K§‚3«m[a, b]þ‚5Ã'¿©7‡^‡ÙWronski1 ªW (t) 6= 0, t ∈ [a, b]" •þ¼ê‚5ƒ'5O ½n5.5 §|(7)˜½3n‡‚5Ã')" (. þ°ã²ŒÆA^êÆX). 1. 2. n. 1. 2. n. ~‡©§. 1ÊÙ. March 24, 2010. 17 / 49.

(23) ˜àg‚5‡©§|)˜m( Ï)(½n ½n5.6 XJX (t), X (t), · · · , X (t)´§|(7)n‡‚5Ã' )§K§|(7)Ï)Œ±L« 1. 2. n. X(t) = c1 X1 (t) + c2 X2 (t) + · · · + cn Xn (t). (8). Ù¥c , c , · · · , c ´?¿~ê" Ï)(8)¹ §|(7)¤k )" 1. (. 2. n. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 18 / 49.

(24) ˜àg‚5‡©§|)˜m( úª ½n  ‚ 1ª. Liouville 5.7 X1 (t), X2 (t), · · · , Xn (t) Wronski W (t). ´§|(7)?¿n‡)§K§ ÷v˜‚5§. W 0 (t) = [a11 (t) + a22 (t) + · · · + ann (t)]W (t). Ï k Rt. W (t) = W (t0 ) · e. (. þ°ã²ŒÆA^êÆX). t0 [a11 (s)+a22 (s)+···+ann (s)]ds. ~‡©§. 1ÊÙ. ,. t, t0 ∈ [a, b]. (9). March 24, 2010. 19 / 49.

(25) ˜àg‚5‡©§|)˜m( ˜àg‚5‡©§|)Ý. XJ˜‡n × nÝ z˜Ñ´(7))§K¡ù‡Ý (7) )Ý " ˜àg‚5‡©§|Ä)Ý. ¡(7)n‡‚5Ã')|¤)Ý (7)Ä)Ý "P Φ(t)§= Φ(t) = [φ (t), φ (t), · · · , φ (t)] Ù¥φ (t), i = 1, 2, · · · , n´(7)n‡‚5Ã')" 1. 2. n. i. (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 20 / 49.

(26) ˜àg‚5‡©§|)˜m( )Ý 5Ÿ ½n5.8 (7)˜½3˜‡Ä)Ý Φ(t)"XJψ(t)´(7)?˜ )§K ψ(t) = Φ(t)c Ù¥c´(½~ê•þ" )Ý 5Ÿ ½n5.9 (7)˜‡)Ý Φ(t)´Ä)Ý ¿©7‡^‡3« m[a, b]þ,˜:t ?§det Φ(t ) 6= 0" 0. (. þ°ã²ŒÆA^êÆX). 0. ~‡©§. 1ÊÙ. March 24, 2010. 21 / 49.

(27) ˜àg‚5‡©§|)˜m( )Ý 5Ÿ ½n5.10 XJΦ(t)´(7)3«m[a, b]þÄ)Ý §C ´šÛ Én × n~êÝ §KΦ(t)C ´(7)3«m[a, b]þÄ)Ý " )Ý 5Ÿ ½n5.11 XJΦ(t), Ψ(t)´(7)3«m[a, b]þü‡Ä)Ý §K 3˜‡šÛÉn × n~êÝ C §¦3«m[a, b]þΨ(t) = Φ(t)C ". (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 22 / 49.

(28) ˜àg‚5‡©§|)˜m( ~1 y. . et −et. e3t e3t. . 2 1. . Φ(t) =. ´§| 0. X =. Ä)Ý §¿ÑÏ)" (. þ°ã²ŒÆA^êÆX). ~‡©§. 1 2. 1ÊÙ. . X. March 24, 2010. 23 / 49.

(29) ˜àg‚5‡©§|)˜m( ~2 ÁŠÑ±Ý. e−t Φ(t) =  0 −e−t . 0 e−t −e−t.  e2t e2t  e2t. Ä)Ý àg‚5‡©§|". (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 24 / 49.

(30) ˜šàg‚5‡©§|)8Ü5Ÿ ½n5.12 ¯ ´šàg‚5‡©§|(5))§X(t)´§éAàg XJX(t) ¯ + X(t) E´šàg‚5‡© ‚5‡©§|(7))§KX(t) §|(5))" ½n5.13 XJX (t), X (t)´šàg‚5‡©§|(5)ü‡)§ KX (t) − X (t) ´éAàg‚5‡©§|(7))" 1. 1. (. 2. 2. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 25 / 49.

(31) ˜šàg‚5‡©§|)8Ü5Ÿ Ï)(½n ¯ ´šàg Φ(t)´àg‚5‡©§|(7)˜‡Ä)Ý §X(t) ‚5‡©§|(5),˜)§Kšàg‚5‡©§|(5)? ˜)X(t)ьL« ¯ X(t) = Φ(t)c + X(t). Ù¥c´(½~ê•þ". (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 26 / 49.

(32) ˜šàg‚5‡©§|~êC´{. Φ(t)´§|(7)˜‡Ä)Ý §u´§|(7)Ï) X(t) = Φ(t)c. ·‚ßÿµ§|(5)kù«/ª)§cAt¼ê§=b  X(t) = Φ(t)c(t). (10). Φ0 (t)c(t) + Φ(t)c0 (t) = A(t)Φ(t)c(t) + F (t). (11). ´§|(5))"Ù¥c(t)´–½•þ¼ê" ò(10)“\§|(5)¥§ ϏΦ(t)´§|(7)Ä)Ý §¤± Ïd§(11)C (. þ°ã²ŒÆA^êÆX). Φ0 (t) = A(t)Φ(t) Φ(t)c0 (t) = F (t) ~‡©§ 1ÊÙ. March 24, 2010. 27 / 49.

(33) ˜šàg‚5‡©§|~êC´{ qϏΦ(t)´Œ_§l  ü>Ӟȩ§. c0 (t) = Φ−1 (t)F (t) Z. t. c(t) = c(t0 ) +. ò(12)“£(10)¥§. Φ−1 (s)F (s)ds. (12). t0. Z. t. Φ−1 (s)F (s)ds. X(t) = Φ(t)c(t0 ) + Φ(t). u´§|(5)Ï). t0. Z. t. X(t) = Φ(t)˜ c + Φ(t)c(t0 ) + Φ(t) Φ−1 (s)F (s)ds t0 Z t = Φ(t)c + Φ(t) Φ−1 (s)F (s)ds (. þ°ã²ŒÆA^êÆX). t0. ~‡©§. 1ÊÙ. March 24, 2010. (13) 28 / 49.

(34) ˜šàg‚5‡©§|~êC´{ ~3 Á¦§|X = A(t)X + F (t)Ï)"Ù¥ 0.  A(t) =. 2 1. 1 2. .  ,. F (t) =. e2t 0. . 9éA§|X = A(t)X Ä)Ý  0.  Φ(t) =. (. þ°ã²ŒÆA^êÆX). et −et. ~‡©§. e3t e3t. 1ÊÙ. . March 24, 2010. 29 / 49.

(35) 5.2. ˜~Xê‚5‡©§|. ~Xê‚5‡©§| A´n × n~êÝ §K~Xêšàg‚5‡©§| X 0 = AX + F (t). (14). ÙéA~Xêàg‚5‡©§| X 0 = AX. (. þ°ã²ŒÆA^êÆX). ~‡©§. (15). 1ÊÙ. March 24, 2010. 30 / 49.

(36) 5.2. ˜~Xê‚5‡©§|. Ý êexp(A) A´n × n~êÝ §¡ exp A =. Ý ê". (. ∞ X An n=0. þ°ã²ŒÆA^êÆX). n!. =E+A+. ~‡©§. A2 An + ··· + + ··· 2! n!. 1ÊÙ. March 24, 2010. (16). 31 / 49.

(37) 5.2. ˜~Xê‚5‡©§|. Ý êexp A5Ÿ (1) XJÝ A, B Œ†§=AB = BA§K exp A · exp B = exp(A + B). (17). é?ÛÝ A§(exp A) 3§ −1. (2). (exp A)−1 = exp(−A). (18). XJT ´šÛÉÝ §K. (3). exp(T −1 AT ) = T −1 (exp A)T. (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. (19). March 24, 2010. 32 / 49.

(38) 5.2. ˜~Xê‚5‡©§|. Ý ê¼êexp(At) ¡ exp(At) =. Ý ê¼ê". (. þ°ã²ŒÆA^êÆX). ∞ X An tn n=0. ~‡©§. (20). n!. 1ÊÙ. March 24, 2010. 33 / 49.

(39) 5.2. ˜~Xê‚5‡©§|. 5Ÿ ½n5.15 Ý. Φ(t) = exp(At) ´§|(15)Ä)Ý § Φ(0) = E" (1) §|(15)Ï)Œ±L« exp(At). X(t) = exp(At)c. XJΦ(t)´§|(15), ˜‡ØÓuexp(At)Ä)Ý. §K. (2). exp(At) = Φ(t)Φ−1 (0). (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. (21). March 24, 2010. 34 / 49.

(40) 5.2. ˜~Xê‚5‡©§|. 5Ÿ ½n5.15 Ý. Φ(t) = exp(At) ´§|(15)Ä)Ý § Φ(0) = E" (1) §|(15)Ï)Œ±L« exp(At). X(t) = exp(At)c. XJΦ(t)´§|(15), ˜‡ØÓuexp(At)Ä)Ý. §K. (2). exp(At) = Φ(t)Φ−1 (0). (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. (21). March 24, 2010. 34 / 49.

(41) 5.2. ˜~Xê‚5‡©§|. ~1 A´˜‡éÝ. . a1  0 A=  ··· 0. 0 a2 ··· 0. ··· ··· ··· ···.  0 0   ···  an. Á¦X = AX Ä)Ý exp(At)" ~2   Á¦X = 20 12 X Ä)Ý exp(At)" 0. 0. (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 35 / 49.

(42) ~Xêàg‚5‡©§|){ ©Ûµ§|(15)¬Ø¬k/X X(t) = eλt · c,. ™,. (λ, c. )Qº ò(22)“\§|(15)¥§. c 6= 0). (22). (λE − A)c = 0. ù¿›X§e · c´§|(15))¿©7‡^‡µλ´Ý. AAŠ c´éAuλA•þ" λt. (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 36 / 49.

(43) ~Xêàg‚5‡©§|){ Ý AAŠ´üŠœ/ ½n5.16 XJ§|(15)XêÝ An‡A Šλ , λ , · · · , λ *dpɧ v , v , · · · , v ´§‚éAA• þ§K§|(15)˜‡Ä)Ý  1. 2. n. 1. 2. n. Φ(t) = [eλ1 t v1 , eλ2 t v2 , · · · , eλn t vn ]. (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. (23). March 24, 2010. 37 / 49.

(44) Ý AAŠ´üŠœ/ ~3 ¦§|X = AX Ä)Ý "Ù¥ 0.  A=. 6 −3 2 1. . ~4 ¦§|X = AX Ä)Ý "Ù¥ 0.  A=. (. þ°ã²ŒÆA^êÆX). 3 5 −5 3. ~‡©§. 1ÊÙ. . March 24, 2010. 38 / 49.

(45) ~Xêàg‚5‡©§|){ Ý AAŠk­Šœ/ ˜m©){ –½Xê{". (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 39 / 49.

(46) Ý AAŠk­Šœ/ ˜m©){ ½n5.18 XJ§|(15)XêÝ Akk‡ØÓA Šλ , λ , · · · , λ §§‚­ê©On , n , · · · , n § n + n + · · · + n = n"-η©Onü •þe , e , · · · , e § K÷vЊ¯K(24))Œd(25)(½§©OP X (t), X (t), · · · , X (t)§u´§|(15)˜‡Ä)Ý  1. 1. 1. 2. k. 2. 1. 2. k. k. 2. 1. 2. n. n. exp(At) = [X1 (t), X2 (t), · · · , Xn (t)]. . (. þ°ã²ŒÆA^êÆX). X 0 = AX X(0) = η ~‡©§. 1ÊÙ. (24). March 24, 2010. 40 / 49.

(47) Ý AAŠk­Šœ/ ˜m©){ ½n5.18 XJ§|(15)XêÝ Akk‡ØÓA Šλ , λ , · · · , λ §§‚­ê©On , n , · · · , n § n + n + · · · + n = n"-η©Onü •þe , e , · · · , e § K÷vЊ¯K(24))Œd(25)(½§©OP X (t), X (t), · · · , X (t)§u´§|(15)˜‡Ä)Ý  1. 1. 1. 2. k. 2. 1. 2. k. k. 2. 1. 2. n. n. exp(At) = [X1 (t), X2 (t), · · · , Xn (t)]. . (. þ°ã²ŒÆA^êÆX). X 0 = AX X(0) = η ~‡©§. 1ÊÙ. (24). March 24, 2010. 40 / 49.

(48) ˜m©){ X(t) = exp(At)η =. k P. exp(At)vi =. i=1. = = =. k P i=1 k P i=1 k P. exp(At) · E · vi. i=1. exp(At) · eλi t · exp(−λi Et) · vi eλi t · exp(A − λi E)t · vi eλi t {E + t(A − λi E) +. i=1. +. (. k P. (25) t2 (A − λi E)2 + · · · 2!. tni −1 (A − λi E)ni −1 }vi (ni − 1)!. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 41 / 49.

(49) ˜m©){ 5 XJÝ Ak˜‡n­AŠ§Kn‘mØ7©)"d ž(25)C. t2 tn−1 2 X(t) = e {E + t(A − λE) + (A − λE) + · · · + (A − λE)n 2! (n − 1)! λt. 2Šâ½n5.18§§|(15)˜‡Ä)Ý. exp(At) = eλt {E + t(A − λE) +. (. þ°ã²ŒÆA^êÆX). ~‡©§. t2 tn−1 (A − λE)2 + · · · + (A − λ 2! (n − 1)!. 1ÊÙ. March 24, 2010. 42 / 49.

(50) ˜m©){ ~5 ¦§|X = AX Ä)Ý "Ù¥ 0. . 1  A= 1 0.  1 1 3 −1  2 2. ~6 ¦§|X = AX Ä)Ý "Ù¥ 0. .  3 4 −10 A =  2 1 −2  2 2 −5 (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 43 / 49.

(51) Ý AAŠk­Šœ/. –½Xê{ ½n5.19 XJ§|(15)XêÝ Akk‡ØÓA Šλ , λ , · · · , λ §­ê©On , n , · · · , n § n + n + · · · + n = n"Kén ­AŠλ §§|(15)kn ‡ ‚5Ã')§/X 1. 1. 2. k. 2. 1. k. 2. k. i. i. i. X(t) = (R0 + R1 t + · · · + Rni −1 tni −1 )eλi t. (28). Ù¥•þR , R , · · · , R dÝ §(½: 0. 1. ni −1.  (A − λi E)R0 = R1      (A − λi E)R1 = 2R2 ··· ···   (A − λi E)Rni −2 = (ni − 1)Rni −1    (A − λi E)ni R0 = 0 (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. (29). March 24, 2010. 44 / 49.

(52) Ý AAŠk­Šœ/ –½Xê{ ^–½Xê{¦)c¡~5Ú~6". (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 45 / 49.

(53) ~Xêšàg‚5‡©§|){ ~êC´úª Z. t. exp[(t − s)A]F (s)ds. X(t) =. (30). t0. Ú. Z. t. X(t) = exp[(t − t0 )A]η +. exp[(t − s)A]F (s)ds. (31). 1ÊÙ. 46 / 49. t0. (. þ°ã²ŒÆA^êÆX). ~‡©§. March 24, 2010.

(54) ~Xêšàg‚5‡©§|){ ~7 ¦§|X = AX + F (t)÷vЩ^‡X(0) = η)"Ù¥ 0.  A=. (. 3 −5. þ°ã²ŒÆA^êÆX). 5 3. .  ,. F (t) =. ~‡©§. e−t 0. 1ÊÙ. .  ,. η=. 0 1. . March 24, 2010. 47 / 49.

(55) 5.3. A^¢~. ÿU6Äó¿. 3ïÄD/¾DÂ!«+)!‚¸À/!†Ô3<N© Ù¯K¥§²~r¤ïįÔw¤dk‡Ü©|¤X Ú§ z‡Ü©¡˜‡ó¿"§äk±eA:µ (1) z‡ó¿k½Nþ§S¹z‡žÑþ!©ÙXÔ Ÿ(½Uþ)¶ (2) ˆ‡ó¿m±9ó¿† Ü‚¸mþŒ?1ԟ(½Uþ) †§¿Ñlԟ(½Uþ)Åð½Æ" ùXÚ¡ó¿XÚ"e¡Šâ<NSÿUáÂ!Ü ¤!üÅn5ïáÿU6Äó¿." (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 48 / 49.

(56) 5.3. A^¢~. <E¥($Ä ¦)¥($Ч  f mM x d2 x   =− m  3 2   dt (x2 + y 2 ) 2. (32).   d2 y f mM y    m 2 =− 3 2 dt (x + y 2 m) 2. (. þ°ã²ŒÆA^êÆX). ~‡©§. 1ÊÙ. March 24, 2010. 49 / 49.

(57)

參考文獻

相關文件

一組曲線 F 的垂直軌跡 (orthogonal trajectory) ,是指一條 曲線在與 F 中的曲線相交時,在交點相交的角度為直角。如

在介紹方向場時,我們曾提過 RL 電流迴路的模型:一個迴 路接上電源(E)電感(L)以及電阻(R) 如下圖. 同時推得這個

线性拟合与二次拟合 数据拟合的线性模型 一次多项式拟合公式..

超定方程组QR分解算法 数据拟合确定常微分方程..

一、 曲线积分的计算法

酸鹼滴定、一次微分、二次微分曲線圖..

一階隨機差分方程式.

MASS::lda(Y~.,data) Linear discriminant analysis MASS::qda(Y~.,data) Quadratic Discriminant Analysis class::knn(X,X,Y,k,prob) k-Nearest Neighbour(X 為變數資料;Y 為分類)