• 沒有找到結果。

第五章 下線晶片之佈局與量測

6.2 未來展望

可程式化類比陣列具有高度可重複配置與及時可規劃的優點,然而在 真實電路設計與實現上則要克服相當多的層面,以提高整體電路系統之工 作效能,因此對於未來 FPAA 的研究,可朝向下列幾點發展:

1 類比電路中,電路常受製程或是溫度等其他外在因素的影響而使工作點 漂移,其結果造成轉導器輸出電流或是操作頻率與設計有所誤差,因此 在電路上可設計具有自我校正與測試功能之電路,以提高電路的可靠度 與精確度。

2 可程式化類比陣列主要藉由互聯網路來重新配置系統內部的 CAB,因此 提升互聯網路繞線的可靠度並規劃其控制機制,使得 CAB 相互之間的 具有最佳連線路徑,並降低寄生與雜散效應之影響。

3 雖然 FPAA 具有高度可規劃的能力,藉由 CAB 之組合,能實現 PID 控 制器等多種不同功能之類比電路。然而實際上,過於複雜之電路合成將 不利於電路應用,因此簡化 CAB 電路,並提高整體電路的效能,為未 來發展的重要的方向。

參考文獻

[1] P. Hasler, “Low-power programmable signal processing,” in Proc. of 5th International Workshop on System-on-Chip for Real-Time Applications, 2005, pp. 413-418.

[2] H. W. Klein, “The EPAC architecture: an expert cell approach to field programmable analog circuits,” in Proc. of IEEE 39th Midwest symposium on Circuits and Systems, 1996, pp. 169-172.

[3] P. G. Gulak, “Field programmable analog arrays: past, present and future perspectives,” in Proc. of TENCON'95. IEEE Region 10 International Conference on Microelectronics and VLSI, 1995, pp.

123-126.

[4] Anadigm, Inc., AN222E04 Data Sheet, 2004.

[5] K. S. Gurumurthy, “Artificial neural networks as building blocks of mixed signal FPGA,” in Proc. of IEEE International Conference on Field-Programmable Technology (FPT), 2003, pp. 375-378.

[6] Z. Salcic and A. Smailagic, Digital Systems Design And Prototyping Using Field Programmable Logic, Kluwer Academic Publishers, 1997 [7] X. Quan, S.H.K. Embabi, and E. Sanchez-Sinencio, “A Current-Mode

Base Field Programmable Analog Array Architecture for Signal Processing Applications,” in Proc. of IEEE Custom Integrated Circuits Conference, 1998, pp. 277-280.

[8] A. Bratt, “Motorola field programmable analogue arrays, present hardware and future trends,” in Proc. of IEE Half-day Colloquium on Evolvable Hardware Systems, 1998, pp. 1/1-1/5.

[9] H. Kutuk and Sung-Mo Kang, “A field-programmable analog array (FPAA) using switched-capacitor techniques,” in Proc. of IEEE International Symposium on Circuits and Systems, 1996, pp. 41-44.

[10] D. A. Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., New York, 1997.

[11] V.C. Gaudet and P.G. Gulak, “A CMOS implementation of a current conveyor-based field-programmable analog array,” Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, 1997, pp. 1156-1159.

[12] T. Georgantas, Y. Papananos and Y. Tsividis, “A comparative study of five integrator structums for monolithic continuous-time filters -a tutorial,” in Proc. of IEEE International Symposium on Circuits and Systems, 1993, pp.

1259-1262.

[13] B. Pankiewicz, M. Wojcikowski, S. Szczepanski and Yichuang Sun, “A field programmable analog array for CMOS continuous-time OTA-C filter applications,” IEEE Journal of Solid-State Circuits, Vol. 37, no.2, 2002, pp. 125-136.

[14] F. Krummenacher and N. Joehl, “A 4-MHz CMOS continuous-time filter with on-chip automatic tuning,” IEEE Journal of Solid-State Circuits, Vol.

23, no.3, 1988, pp. 750-758.

[15] E. Seevinck, R.F. Wassenaar, “A versatile CMOS linear transconductor / square-law function,” IEEE Journal of Solid-State Circuits, Vol. 22, no.3, 1987, pp. 366-377.

[16] Z. Wang and W. Guggenbuhl, “A voltage-controllable linear MOS transconductor using bias offset technique,” IEEE Journal of Solid-State Circuits, Vol. 25, no.1, 1990, pp. 315-317.

[17] A.N. Mohieldin and E. Sanchez-Sinencio, “A dual-mode low-pass filter for 802.11b/Bluetooth receiver,” in Proc. of the 30th European

Solid-State Circuits Conference, 2004, pp. 423-426.

[18] Ko-Chi Kuo and A. Leuciuc, “A linear MOS transconductor using source degeneration and adaptive biasing,” IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, pp. 937-943, 2001.

[19] A. Demosthenous and M. Panovic, “Low-voltage MOS linear

transconductor / squarer and four-quadrant multiplier for analog VLSI,” in Proc. of IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, 2005, pp. 1721-1731.

[20] I. Yamaguchi, F. Matsumoto and Y. Noguchi, “Technique to improve linearity of transconductor with bias offset voltages controlling a tail current,” Electronics Letters, 2005, pp. 1146-1148.

[21] E.K.F. Lee and P.G. Gulak, “A transconductor-based field-programmable analog array,” in ISSCC Tech. Dig., 1995, pp. 198-199, 366.

[22] E.K.F. Lee and P.G. Gulak, “Field programmable analogue array based on MOSFET transconductors,” Electronics Letters, 1992, pp. 28-29.

[23] Y.P. Tsividis, “Integrated continuous-time filter design,” in Proc. of IEEE Custom Integrated Circuits Conference, 1993, pp. 6.4.1-6.4.7.

[24] R. Schaumann and M.E.V. Valkenburg, Design of Analog Filters, Oxford University Press, Inc., 2001.

[25] E. Pierzchala, M.A. Perkowski, P. Van Halen and R. Schaumann,

“Current-mode amplifier/integrator for a field-programmable analog array,” in ISSCC Tech. Dig., 1995, pp. 196-197.

[26] W. Surakampontorn, V.Riewruja, K. Kumwachara and C. Surawatpunya,

“Temperature-insensitive voltage-to-current converter and its

applications,” IEEE Trans. onInstrumentation and Measurement 1999, pp. 1270-1277

[27] Gray Hurst and Lewis Meyer, Analysis and Design of Analog Integrated CircuitsDesign of Analog Filters, 4th ed., John Wiley & Sons, Inc., 2001 [28] M. Pribytko and P. Quinn, “A CMOS single-ended OTA with high

CMRR,” in Proc. of the 29th European Solid-State Circuits Conference, 2003, pp. 293-296.

[29] P.M. VanPeteghem and J.F. Duque-Carrillo, “A general description of common-mode feedback in fully-differential amplifiers,” in Proc. of IEEE International Symposium on Circuits and Systems, 1990, pp. 320-312.

[30] Xuguang Zhang and E.I. El-Masry, “A 1.8 V CMOS linear transconductor and its application to continuous-time filters,” in Proc. of the 2004

International Symposium on Circuits and Systems, 2004, pp. I-1012-15.

[31] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Companies, Inc., New York, 2001.

[32] T.R. Balen, J.V. Calvano, M.S. Lubaszewski and M. Renovelf, “Functional test of field programmable analog arrays,” in Proc. of 24th IEEE VLSI Test Symposium, 2006, pp. 6.

[33] A. Laknaur and Haibo Wang, “A methodology to perform online self-testing for field-programmable analog array circuits,” IEEE Trans. on

Instrumentation and Measurement, Vol. 54, pp. 1751-1760, 2005.

[34] J. Faura, I. Lacadena, A. Torralba and J.M. Insenser, “Programmable analog hardware: a case study,” in Proc. of IEEE International Conference on Electronics, Circuits and Systems, 1998, pp. 297-300.

[35] Sedra, Smith, Microelectronic Circuits, 3rd ed., New York, 1990.

[36] Christopher Saint and Judy Saint, IC Mask Design Essential Layout

Techniques, McGraw-Hill, Companies, Inc., New York, 2002.

[37] Christopher Saint and Judy Saint, IC Layout Basic A Practical Guide, McGraw-Hill, Companies, Inc., New York, 2002.