• 沒有找到結果。

Conclusions and Future Works

7.2. Future Works

In addition to using the on-chip transient detection circuits and transient-to-digital converters proposed in this dissertation, some other techniques could be the useful candidates to further improve the susceptibility of the CMOS ICs against the system-level ESD or EFT tests. These future works are listed below.

(1) Linear Relationship between the ESD/EFT Zapping Voltages and Digital Codes (2) Hardware and Firmware Co-Design with System-Auto-Reset Function

(3) Latchup Auto-Detection, Self-Stop, and Auto-Reset Circuit (4) Layout Optimization

(5) Other Specific Advanced Process Technologies

With the developments of future system-level ESD and EFT prevention techniques, it is anticipated that electrical transient disturbance events can be efficiently suppressed in the continual-scaling CMOS technologies.

References

[1] S. Voldman, ESD: Circuits and Devices, John Wiley & Sons, 2006.

[2] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, 2nd Edition, John Wiley & Sons, Ltd., England, 2002.

[3] A. Amerasekera and C. Duvvury, “The impact of technology scaling on ESD robustness and protection circuit design,” in Proc. EOS/ESD Symp., 1994, pp. 237-245.

[4] C. Diaz, T. Kopley, and P. Marcoux, “Building-in ESD/EOS reliability for sub-half-micron CMOS processes,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), 1995, pp.

276-283.

[5] S. Daniel and G. Krieger, “Process and design optimization for advanced CMOS I/O ESD protection devices,” in Proc. EOS/ESD Symp., 1990, pp. 206-213.

[6] R. Rountree, “ESD protection for submicron CMOS circuits: Issues and solutions,” in IEDM Tech. Dig., 1988, pp. 580-583.

[7] C. Jiang, E. Nowak, and M. Manley, “Process and design for ESD robustness in deep submicron CMOS technology,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), 1996, pp.

233-236.

[8] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS clamp circuits for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp.

173–183, Jan. 1999.

[9] EMC – Part 4-2: Testing and Measurement Techniques – Electrostatic Discharge Immunity Test, IEC 61000-4-2 International Standard, 2001.

[10] M.-D. Ker and Y.-Y. Sung, “Hardware/firmware co-design in an 8-bits microcontroller to solve the system-level ESD issue on keyboard,” in Proc. EOS/ESD Symp., 1999, pp.

352–360.

[11] G. Muchaidze, J. Koo, Q. Cai, T. Li, L. Han, A. Martwick, K. Wang, J. Min, J. Drewniak, and D. Pommerenke, “Susceptibility scanning as a failure analysis tool for system-level electrostatic discharge (ESD) problems,” IEEE Trans. Electromagn. Compat., vol. 50, no.

2, pp. 268–276, May 2008.

[12] J. Koo, Q. Cai, D. Pommerenke, K. Wang, J. Mass, M. Hirata, and A. Martwick, “The repeatability of system-level ESD test and relevant ESD generator parameters,” in Proc.

IEEE Int. Symp. on Electromagn. Compat. (EMC), 2008.

[13] D. Smith, and A. Wallash, “Electromagnetic interference (EMI) inside a hard disk driver

due to external ESD,” in Proc. EOS/ESD Symp., 2002, pp. 32–36.

[14] D. Smith, l. Henry, M. Hogsett, and J. Nuebel, “Sources of impulsive EMI in large server farms,” in Proc. EOS/ESD Symp., 2002, pp. 26–31.

[15] N. Shimoyama, M. Tanno, S. Shigematsu, H. Morimura, Y. Okazaki, and K. Machida,

“Evaluation of ESD hardness for fingerprint sensor LSIs,” in Proc. EOS/ESD Symp., 2004, pp. 75–81.

[16] T.-H. Wang, W.-H. Ho, and L.-C. Chen, “On-chip system ESD protection design for STN LCD drivers,” in Proc. EOS/ESD Symp., 2005, pp. 316–322.

[17] W. Stadler, S. Bargstadt-Franke, T. Brodbeck, R. Gaertner, M. Goroll, H. Goβner, N.

Jensen, and Chr. Muller, “From the ESD robustness of products to the system-level ESD robustness,” in Proc. EOS/ESD Symp., 2004, pp. 67–74.

[18] T. Smedes, J. Zwol, G. Raad, T. Brodbeck, and H. Wolf, “Relations between system level ESD and (vf-) TLP,” in Proc. EOS/ESD Symp., 2006, pp. 136–143.

[19] ESD Association Standard Test Method ESD STM5.1-2001, for Electrostatic Discharge Sensitivity Testing – Human Body Model (HBM) – Component Level, ESD Association, 2001.

[20] Electrostatic Discharge (ESD) Sensitivity Testing―Human Body Model (HBM), EIA/JEDEC Standard Test Method A114-D, 2006.

[21] ESD Association Standard Test Method ESD STM5.2-1999, for Electrostatic Discharge Sensitivity Testing – Machine Model – Component Level, ESD Association, 1999.

[22] Electrostatic Discharge (ESD) Sensitivity Testing―Machine Model (MM), EIA/JEDEC Standard Test Method A115-A, 1997.

[23] ESD Association Standard Test Method ESD STM5.3.1-1999, for Electrostatic Discharge Sensitivity Testing – Charge Device Model – Component Level, ESD Association, 1999.

[24] Electrostatic Discharge (ESD) Sensitivity Testing―Charge Device Model (CDM), EIA/JEDEC Standard Test Method C101-C, 2004.

[25] Y.-W. Hsiao and M.-D. Ker, “Investigation on discharge current waveforms in board-level CDM ESD events with different board sizes,” in Presentations of the 2nd International ESD Workshop, Port D’Albret, France, May 12-15, 2008, pp. 284-296.

[26] M.-D. Ker and S.-F. Hsu, “Physical mechanism and device simulation on transient-induced latchup in CMOS ICs under system-level ESD test,” IEEE Trans.

Electron Devices, vol. 52, no. 8, pp. 1821–1831, Aug. 2005.

[27] S.-F. Hsu and M.-D. Ker, “Transient-induced latchup dependences on power-pin

damping frequency and damping factor in CMOS integrated circuits,” IEEE Trans.

Electron Devices, vol. 54, no. 8, pp. 2002–2010, Aug. 2007.

[28] S. -F. Hsu and M. -D. Ker, “Dependences of damping frequency and damping factor of bi-polar trigger waveforms on transient-induced latchup,” in Proc. EOS/ESD Symp., 2005, pp. 118–125.

[29] EMC – Part 4-4: Testing and Measurement Techniques – Electrical Fast Transient/Burst Immunity Test, 2004. IEC 61000-4-4 International Standard.

[30] M.-D. Ker and S.-F. Hsu, “Evaluation on board-level noise filter networks to suppress transient-induced latchup in CMOS ICs under system-level ESD test,” IEEE Trans.

Electromagn. Compat., vol. 48, no. 1, pp. 161–171, Feb. 2006.

[31] M.-D. Ker and S.-F. Hsu, “Evaluations on board-level noise filter networks to suppress transient-induced latchup under system-level ESD test,” in Proc. EOS/ESD Symp., 2005, pp. 262–269.

[32] H. Ott, Noise Reduction Techniques in Electronic Systems, 2nd Edition, John Wiley &

Sons, 1988.

[33] M. Montrose, Printed Circuit Board Design Techniques for EMC Compliance, IEEE Press, 2000.

[34] V. Kodali, Engineering Electromagnetic Compatibility: Principles, Measurements, and Technologies, IEEE Press, 1996.

[35] M.-D. Ker, C.-C. Yen, and P.-C. Shin, “On-chip transient detection circuit for system-level ESD protection in CMOS integrated circuits to meet electromagnetic compatibility regulation,” IEEE Trans. Electromagn. Compat., vol. 50, no. 1, pp. 13–21, Feb. 2008.

[36] M.-D. Ker, C.-C. Yen, C.-S. Liao, T.-Y. Chen, and C.-C. Tsai, “Transient-to-digital converter for ESD protection design in microelectronic systems,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), 2008, pp. 409-412.

[37] M.-D. Ker, C.-S. Liao, and C.-C. Yen, “Transient detection circuit for system-level ESD protection and its on-board behavior with EMI/EMC filters,” in Proc. IEEE Int. Symp.

on Electromagn. Compat. (EMC), 2008, in press.

[38] C.-C. Yen, C.-S. Liao, and M.-D. Ker, “New transient detection circuit for system-level ESD protection,” in Proc. IEEE Int. Symp. on VLSI Design, Automation and Test (VLSI-DAT), 2008, pp. 180-183.

[39] J.-J. Peng, M.-D. Ker, and H.-C. Jiang, “Latchup current self-stop circuit for whole-chip latchup prevention in bulk CMOS integrated circuits,” in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS), 2002, vol. 5, pp. 537–540.

[40] R. Merrill and E. Issaq, “ESD design methodology,” in Proc. EOS/ESD Symp., 1993, pp.

233-237.

[41] P. Tong, W. Chen, R. Jiang, J. Hui, P. Xu, and P. Liu, “Active ESD shunt with transistor feedback to reduce latchup susceptibility or false triggering,” in Proc. IEEE Int. Phys.

Failure Anal. Integr. Circuits Symp. (IPFA), 2004, pp. 89-92.

[42] S. Poon and T. Maloney, “New considerations for MOSFET power clamps,” in Proc.

EOS/ESD Symp., 2002, pp. 1-5.

[43] J. Smith and G. Boselli, “A MOSFET power supply clamp with feedback enhanced triggering for ESD protection in advanced CMOS technologies,” in Proc. EOS/ESD Symp., 2003, pp. 8-16.

[44] J. Li, R. Gauthier, and E. Rosenbaum, “A compact, timed-shutoff, MOSFET-based power clamp for on-chip ESD protection,” in Proc. EOS/ESD Symp., 2004, pp. 273-279.

[45] M. Stockinger, J. Miller, M. Khazhinsky, C. Torres, J. Weldon, B. Preble, M. Bayer, M.

Akers, and V. Kamat, “Boosted and distributed rail clamp networks for ESD protection in advanced CMOS technologies,” in Proc. EOS/ESD Symp., 2003, pp. 17-26.

[46] C.-C. Yen and M.-D. Ker, “Failure of on-chip power-rail ESD clamp circuits during system-level ESD test,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), 2007, pp. 598-599.

[47] M.-D. Ker and S.-F. Hsu, “Component-level measurement for transient-induced latch-up in CMOS ICs under system-level ESD considerations,” IEEE Trans. Device Mat. Rel., vol. 6, no. 3, pp. 461-472, Sep. 2006.

[48] Electrostatic Discharge Simulator, NoiseKen ESS-2002 & TC-825R, Noise Laboratory Co., LTD., Japan.

[49] Technical Specification, EMCPro Plus EMC Test system, Thermo Fisher Scientific Inc., U.S.A.

[50] M.-D. Ker and W.-Y. Lo, “Methodology on extracting compact layout rules for latchup prevention in deep-submicron bulk CMOS technology,” IEEE Trans. on Semiconductor Manufacturing, vol. 16, no. 2, pp. 319-334, 2003.

[51] S. Voldman, Latchup, John Wiley & Sons, 2008.

[52] M.-D. Ker and C.-Y. Wu, “Modeling the positive-feedback regenerative process of CMOS latchup by a positive transient pole method – part I: theoretical derivation,” IEEE Trans. Electron Devices, vol. 42, pp. 1141–1148, Jun. 1995.

[53] S. Bargstätd-Franke, W. Stadler, K. Esmark, M. Streibl, K. Domanski, H. Gieser, H. Wolf, and W. Bala, “Transient latch-up: experimental analysis and device simulation,” in Proc.

EOS/ESD Symp., 2003, pp. 80–87.

[54] G. Weiss and D. Young, “Transient-induced latchup testing of CMOS integrated circuits,” in Proc. EOS/ESD Symp., 1995, pp. 194–198.

[55] R. Troutman and H. Zappe, “A transient analysis of latchup in bulk CMOS,” IEEE Trans.

Electron Devices, vol. 30, pp. 170–179, Feb. 1983.

[56] E. Hamdy and A. Mohsen, “Characterization and modeling of transient latchup in CMOS technology,” in IEDM Tech. Dig., 1983, pp. 172–175.

[57] W. Morris, “Latchup in CMOS,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), 2003, pp.

76–84.

[58] D. Estreich, A. Ochoa Jr., and R. Dutton, “An analysis of latch-up prevention in CMOS IC’s using an epitaxial-buried layer process,” in IEDM Tech. Dig., 1978, pp. 230–234.

[59] R. Troutman, “Epitaxial layer enhancement of n-well guard rings for CMOS circuits,”

IEEE Electron Device Lett., vol. 4, no. 12, pp. 438–440, Dec. 1983.

[60] K. Fu, “Transient latchup in bulk CMOS with a voltage-dependent well-substrate junction capacitance,” IEEE Trans. Electron Devices, vol. 32, pp. 717–720, Mar. 1985.

[61] G. Goto, H. Takahashi, and T. Nakamura, “Latchup immunity against noise pulses in a CMOS double well structure,” in IEDM Tech. Dig., 1983, pp. 168–171.

[62] R. Troutman and H. P. Zappe, “Layout and bias considerations for preventing transiently triggered latchup in CMOS,” IEEE Trans. Electron Devices, vol. 31, pp. 315–321, Mar.

1984.

[63] R. Troutman and H. Zappe, “Layout and bias considerations for preventing transiently triggered latchup in CMOS,” IEEE Trans. Electron Devices, vol. 31, pp. 315–321, Mar.

1984.

[64] S. Voldman, E. Gebreselasic, L. Lanzerotti, T. Larsen, N. Feilchenfeld, S. Onge, A.

Joseph, and J. Dunn, “The influence of a silicon dioxide-filled trench isolation structure and implanted sub-collector on latchup robustness,” in Proc. IEEE Int. Rel. Phys. Symp.

(IRPS), 2005, pp. 112–120.

[65] S. Voldman, E. Gebreselasic, M. Zierak, D. Hershberger, D. Collins, N. Feilchenfeld, S.

St. Onge, and J. Dunn, “Latchup in merged triple well structure,” in Proc. IEEE Int. Rel.

Phys. Symp. (IRPS), 2005, pp. 129–136.

[66] C. Duvvury and G. Boselli, “ESD and latch-up reliability for nanometer CMOS technologies,” in IEDM Tech. Dig., 2004, pp. 933–936.

[67] G. Boselli, V. Reddy, and C. Duvvury, “Latch-up in 65nm CMOS technology: a scaling perspective,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), 2005, pp. 137–144.

[68] S. Voldman, “Latchup and the domino effect,” in Proc. IEEE Int. Rel. Phys. Symp.

(IRPS), 2005, pp. 145–156.

[69] R. Troutman, Latchup in CMOS Technology: The Problem and the Cure, Kluwer Publications, New York, 1986.

[70] Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors (ITRS), 2005.

[71] M. Mahanpour and I. Morgan, “The correlation between latch-up phenomenon and other failure mechanisms,” in Proc. EOS/ESD Symp., 1995, pp. 289–294.

[72] S. Voldman, “Latch-up – it’s back,” in Threshold Newsletter, ESD Association, Sep./Oct., 2003.

[73] S. Bargstätd-Franke, W. Stadler, K. Esmark, M. Streibl, K. Domanski, H. Gieser, H. Wolf, and W. Bala, “Transient latch-up: experimental analysis and device simulation,” in Proc.

EOS/ESD Symp., 2003, pp. 70-78.

[74] EIA/JEDEC Standard No. 78, “IC Latch-up Test,” Electronic Industries Association, 1997.

[75] ANSI/ESD SP5.4-2004: Transient Latch-up Testing―Component Level Supply Transient Stimulation, 2004. ESD Association Standard Practice.

[76] M. Kelly, L. Henry, J. Barth, G. Weiss, M. Chaine, H. Gieser, D. Bonfert, T. Meuse, V.

Gross, C. Hatchard, and I. Morgan, “Developing a transient induced latch-up standard for testing integrated circuits,” in Proc. EOS/ESD Symp., 1999, pp. 178–189.

[77] C. Brennan, K. Chatty, J. Sloan, P. Dunn, M. Muhammad, and R. Gauthier, “Design automation to suppress cable discharge event (CDE) induced latchup in 90nm CMOS ASICs,” in Proc. EOS/ESD Symp., 2005, pp. 126-130.

[78] G. Cerri, R. Leo, and V. Primiani, “Investigation of radiated susceptibility during EFT tests,” IEEE Trans. Electromagn. Compat., vol. 39, no. 4, pp. 298–303, Nov. 1997.

[79] G. Cerri, R. Leo, and V. Primiani, “Electrical fast-transient: conducted and radiated disturbance determination by a complete source modeling,” IEEE Trans. Electromagn.

Compat., vol. 43, no. 1, pp. 37–44, Feb. 2001.

[80] D. Smith, “An investigation into the performance of the IEC 100-4-4 capacitive clamp,”

in Proc. EOS/ESD Symp., 1996, pp. 223–226.

[81] C.-C. Yen and M.-D. Ker, “Transient-induced latchup in CMOS integrated circuits due to electrical fast transient (EFT) test,” in Proc. IEEE Int. Phys. Failure Anal. Integr.

Circuits Symp. (IPFA), 2007, pp. 11–13.

VITA

姓 名:顏承正 (Cheng-Cheng Yen)

性 別:男

出生日期:民國65 年 5 月 13 日 出 生 地:新竹市

住 址:新竹市光復路 2 段 10 巷 15 號

學 歷:國立交通大學電機與控制工程系畢業 (83 年 9 月 - 87 年 6 月)

國立交通大學電子研究所碩士班 (87 年 9 月 - 89 年 6 月)

國立交通大學電子研究所博士班 (89 年 9 月入學)

論文名稱:互補式金氧半積體電路之系統層級靜電放電防護設計

System-Level ESD Protection Design in CMOS ICs with Transient Detection Circuits