• 沒有找到結果。

二重積分的極座標形式

N/A
N/A
Protected

Academic year: 2022

Share "二重積分的極座標形式"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

Section 3 二重積分的極座標形式

3.1 (1)x=4cosπ3,y=4sinπ3 (2)x=−1cos4 ,y=−1sin4

(3)x=0cos2π,y=0sin2π (4)r=12+ 02,tanθ=01 (5)r=02+ 12,tanθ=10

(6)r=(−1)2+ (−1)2,tanθ=−1

−1

3.2 圖在下一頁 (1)r=4cosθ

=> r2=4rcosθ

=> x2+ y2=4x

=> (x − 2)2+ y2=2

(2)r=2sinθ

=> r2=2rsinθ

=> x2+ y2=2y

=> x2+ (y − 1)2=1

(2)rcos(θ − π4)=1

=> r(cosπ4cosθ+ sinπ4sinθ)=1

=> x2 +y2=1

=> x + y=√ 2

3.3 (1)x2− y2=(rcosθ)2− (rsinθ)2=r2(cos2θ− sin2θ)=r2cos2θ (2)xy=(rcosθ)(rsinθ)=r2sinθcosθ=12r2sin2θ

(3)x+y-1=rcosθ + rsinθ − 1 (4)e−(x2+y2)=e−r2

(2)

Figure 1: 3.2(1)

Figure 2: 3.2(2)

Figure 3: 3.2(3)

(3)

3.4 (1)R0πR24rsinθrdrdθ

=R0π(13r3sinθ)|42

=R0π 563cosθdθ

=563 (−cosθ|π0)

=1123

(2)R0πR03(√

1 + 2r2+ θ)rdrdθ

=R0πR03r√

1 + 2r2+ rθdrdθ

=R0π(16(1 + 2r2)32 +12r2θ)|30

=R0π(161932 +92θ− 16)dθ

=16(1932 − 1)θ +94θ2

=16π(1932 − 1) + 94π2 (3)R

π 4

0

Rcosθ

sinθ (√

1 − r2tanθ)rdrdθ

=R

π 4

0 (−13(1 − r2)32tanθ)cosθsinθ

=R

π 4

0 (sin3θ− cos3θ)(tanθ)dθ

=R

π 4

0 (sinθ − cosθ)(tanθ + sin2θ)dθ

=R

π 4

0 sinθtanθ+ sin3θ− sinθ − sin2θcosθdθ

=R

π 4

0 secθ− cosθ + sinθ(−cos2θ) − sin2θcosθdθ

=(ln|secθ + tanθ| − sinθ + 13cos3θ− 13sin3θ)

π 4

0

=ln(1 +√

2) −1213 (4)R

π 2

0

Rsin2θ 0 rdrdθ

=R

π 2

0 (12r2)|0sin2θ

=R

π 2

0 1

2sin2θdθ

=−14cos2θ|

π 2

0

=12

3.5 (1)R

π 2

0

Rsin2θ

0 rdrdθ

=R

π 2

0 1

2r2)sin2θ0

=R

π 2

0 1

2(sin2θ)2

=R

π 2

0 1

4(1 − cos4θ)dθ

=(14θ− 161sin4θ)

π 2

0

(4)

(2)R

2 π 2

R1−cosθ

1 rdrdθ

=R

2 π

2 (12r2)1−cosθ1

=R

2 π 2

1

2cos2θ− cosθdθ

=R

2 π 2

1

4(1 + cos2θ) − cosθdθ

=(14(θ + 12sin2θ) − sinθ)

2 π 2

=π4 + 2

(3)R0πR01er2rdrdθ

=R0π(12er2)|10

=R0π 12(e − 1)dθ

=12(e − 1)θ|π0

=12π(e − 1)

(4)R0πR01ln(1 + r2)rdrdθ 設u=ln(1 + r2),dv=rdrdu= 2r

1+r2dr,v=12r2

=R0π(12r2ln(1 + r2)|10R01 1

2r2× 1+r2r2dr)dθ

=R0π(12ln2 −R01 r3

1+r2dr)dθ

=R0π(12ln2 −R01r− 1+rr2dr)dθ

=R0π 12ln2 − (12r212ln(1 + r2))|10

=R0π 12ln2 − (1212ln2)dθ

=R0π(ln2 −12)dθ

=(ln2 − 12)θ|π0

=π(ln2 − 12) (5)R0πR

1 2

0 r2sinθdrdθ

=R0π(13r3sinθ)

1 2

0

=R0π 241sinθdθ

=241 (−cosθ)π0

=121

3.6 (1)0 ≤ x ≤ 2 ⇒ 0 ≤ r ≤ cosθ2

0 ≤ y ≤ x ⇒ 0 ≤ rsinθ ≤ rcosθ ⇒ 0 ≤ tanθ ≤ 1 ⇒ 0 ≤ θ ≤ π4

(5)

(2)R

π 4

0

Rcosθ2

0 r2sinθdrdθ

=R

π 4

0 (13r3sinθ)

2 cosθ

0

=R

π 4

0 8

3tanθsec2θdθ

=43tan2θ|

π 4

0

=43

3.8 考慮內接圓的範圍 (畫圖可知半徑為一):0 ≤ r ≤ 1,0 ≤ θ ≤ 2π 積分

R

0

R1

0 1

1+r2rdrdθ

=R0(12ln(1 + r2))10

=R0 12ln2dθ

=(12ln2)θ|0

=πln2

接著, 換考慮外接圓的範圍 (畫圖可知半徑為2):0 ≤ r ≤2,0 ≤ θ ≤ 2π 積分

R

0

R2

0 1

1+r2rdrdθ

=R0(12ln(1 + r2))02

=R0 12ln3dθ

=(12ln3)θ|0

=πln3

由於內接圓⊂ Ω ⊂外接圓, 所以由習題1.6可知 πln2 <R R 1+x12+y2dA < πln3

參考文獻

相關文件

Edwards 在所著 《The Historical Development of the Calculus》 第 37 頁 提到此一拋物線比例性質和相關延伸時, 有下列的評論: Archimedes quotes these facts without proof, referring to

[r]

[r]

第四章 直角座標與二元一次方程式.

第四章 直角座標與二元一次方程式.

定理 10.2-1 座標平面上兩點距離公式 座標平面上兩點距離公式 座標平面上兩點距離公式 座標平面上兩點距離公式 ... 33

以上三則「申論題」,都出自 Math through the Ages: A Gentle History for Teachers and Others,作者 Berlinghoff 與 Gouvea 將它們列為「教案」(project) 書寫或設計的問題。無 論

[r]