• 沒有找到結果。

a, b, c ∈ Z v c 6= 0, ŽJ€|ìbnyJtÝÃÍP²

N/A
N/A
Protected

Academic year: 2022

Share "a, b, c ∈ Z v c 6= 0, ŽJ€|ìbnyJtÝÃÍP²"

Copied!
13
0
0

加載中.... (立即查看全文)

全文

(1)

Exercise

Chapter 1. JóÝÃÍP²

(1) ƒ' a, b, c ∈ Z v c 6= 0, ŽJ€|ìbnyJtÝÃÍP².

(a) u c | a + b v c | a, J c | b.

(b) a | buv°u ac | bc.

(c) u a | b, JEŒ n ∈ N /b an| bn.

(d) u a > 1 v a − 1 | b − 1 |C a − 1 | bc − 1, J a − 1 | c − 1.

(2) ƒ' a, m, n ∈ N v a > 1, |ì&ƊJ€ am− 1 | an− 1 uv°u m | n.

(a) ¿à.P5Š xh− 1 = (x − 1)(xh−1+ xh−2+ · · · + x + 1) (Í h ∈ N), J€u m | n, J am− 1 | an− 1.

(b) J€u am−1 | am0+r−1 (Í m0, r ∈ Zv m0, r ≥ 0)v am−1 | am0−1, J am− 1 | ar− 1. µhJ€u am− 1 | an− 1,J m | n.

(3) |ì&Æ+ÛËË!PÝ division algorithm (t°æ§). 9…&ÆG

ƒ' a, b ∈ Z v b 6= 0 (ă' b ∈ N).

(a) J€D3°×Ý h, r ∈ Z ”•

a = bh + r v 0 ≤ r < |b| . (b) J€D3°×Ý h, r ∈ Z ”•

a = bh + r v − |b|

2 < r ≤ |b|

2 .

(4) ƒ' a, b ∈ Z v d Î/) {ma + nb | m, n ∈ Z} tÝÑJó. ŽJ€

u r ∈ N, J rd Î/) {mra + nrb | m, n ∈ Z} tÝÑJó. µhJ

€ gcd(ra, rb) = r gcd(a, b).

———————————– 06 March, 2008

1

(2)

(5) ƒ' a, b, c ∈ Z, Ž¿à§

5gcd(a, b) = 1 uv°uD3 r, s ∈ Z ¸ÿ ra + sb = 16 J€|ìbny!²ÝP².

(a) ƒ' gcd(a, b) = 1 v c | a + b. ŽJ€ gcd(a, c) = gcd(b, c) = 1.

(b) ƒ' m, n ∈ N. ŽJ€ gcd(a, b) = 1 uv°u gcd(am, bn) = 1.

(6) ƒ' a, b ∈ Z v d = gcd(a + b, a − b).

(a) ŽJ€ d | 2a v d | 2b.

(b) uá gcd(a, b) = 1 ŽJ€ a, b ! óT! ‰ó` d = 2; ‚ a, b ×׉` d = 1.

(7) ƒ' n ∈ N, n > 2 v a1, a2, . . . , an∈ Z.

(a) EŒ t ∈ N v 1 ≤ t ≤ n − 1, ŽJ€

gcd(a1, . . . , an) = gcd(gcd(a1, . . . , at), gcd(at+1, . . . , an)).

(b) EŒ t1, . . . , tr ∈ NÍ t0 = 0 < t1 < t2 < · · · < tr < n = tr+1,u E 0 ≤ i ≤ r, ƒ di = gcd(ati+1, . . . , ati+1). ŽJ€

gcd(a1, . . . , an) = gcd(d0, d1, . . . , dr).

(8) ƒ' n ∈ N, n > 2 v a1, a2, . . . , an∈ Z.

(a) EŒ t ∈ N v 1 ≤ t ≤ n − 1, ŽJ€

lcm(a1, . . . , an) = lcm(lcm(a1, . . . , at), lcm(at+1, . . . , an)).

(b) EŒ t1, . . . , tr ∈ NÍ t0 = 0 < t1 < t2 < · · · < tr < n = tr+1,u E 0 ≤ i ≤ r, ƒ li = lcm(ati+1, . . . , ati+1). ŽJ€

lcm(a1, . . . , an) = lcm(l0, l1, . . . , lr).

(9) ƒ' a1, a2, . . . , an∈ N. ŽJ€ lcm(a1, a2, . . . , an) = a1a2· · · an uv°u a1, a2, . . . , an ËË!² (pairwise relatively prime).

———————————– 13 March, 2008

(3)

Chapter 1. JóÝÃÍP² 3

(10) ƒ' a, b, c ∈ Z v d = gcd(a, b).

(a) ŽJ€]P ax + by = c bJóŠuv°u d | c.

(b) ƒ' d | c v x = m0, y = n0 Î ax + by = d Ý×àJóŠ, Ž¶ì ax + by = cÝXbJóŠ (à a, b, c, d, m0, n0 î).

(11) Ž¶Œ|ì diophantine equations ÝXbJóŠ.

(a) 18x + 27y = 15.

(b) 17x + 29y = 10.

(12) ƒ' a1, a2, . . . , an∈ Z v d = gcd(a1, a2, . . . , an).

(a) u c ∈ Z v d - c, ŽJ€]P

a1x1+ a2x2+ · · · + anxn = c PJóŠ.

(b) u c ∈ Z v d | c, ŽJ€]P

a1x1+ a2x2+ · · · + anxn = c bP§9àJóŠ.

(13) Ž¶Œ|ì diophantine equations ÝXbJóŠ.

(a) 9x1+ 12x2+ 16x3= 13.

(b) 8x1− 4x2+ 6x3 = 6.

(14) ƒ' a, b ∈ Z, ŽJ€ gcd(a, b) = 1 uv°u gcd(a + b, ab) = 1.

(Hint: ¿à Euclid Ý Lemma |Cy 1 ÝJó/b².ó §)

———————————– 20 March, 2008

(4)

(15) Ž0ŒÝ×à a, b ∈ N ”• gcd(a, b) = 12 v lcm(a, b) = 360.

(16) ƒ' a, b, n ∈ N uá ab = n2 v gcd(a, b) = 1, ŽJ€D3 c, d ∈ N ”

• a = c2 v b = d2.

(17) ƒ' m ∈ N v p βó, AŒ pa | mv pa+1- m,J&ÆÌ pa ªJt m và pa||m î. ¨ƒ' pa||m v pb||n.

(a) uá a < b, ŽO r ”• pr||m + n.

(b) ŽÜ×Í a = b Ý»¸ÿ pr||m + nv r > a.

(c) ŽO s ”• ps||mn.

Chapter 2. Arithmetic Function

(1) &ÆL×Í arithmetic function ρ ρ(1) = 1 vE n > 1 L ρ(n) = 2m Í m n Ý8²².óÍó.

(a) ŽJ€ ρ Î multiplicative v1€ ρ Î completely multiplicative.

(b) ƒ

f (n) = X

d|n,d∈N

ρ(d).

u n = pn11· · · pnrr n ݲ.ó5Š, ŽO f(n).

(2) XÛÝ Liouville λ-function Î×Í arithmetic function λ ÍLAì:

λ(1) = 1 vE n > 1 u n ݲ.ó5Š n = pn11· · · pnrr,J λ(n) = (−1)n1+···+nr.

(a) ŽJ€ λ Î completely multiplicative.

(b) ƒ

F (n) = X

d|n,d∈N

λ(d),

ŽJ€AŒD3 a ∈ N ¸ÿ n = a2,J F (n) = 1; ÍJ F (n) = 0.

———————————– 27 March, 2008

(5)

Chapter 3. Congruences 5

(3) |ìοÍny Euler φ-function ÝP². h m, n ∈ N.

(a) ƒ' n = pn11· · · pnrr Î n ݲ.ó5Š. ŽJ€

φ(n) =¡

pn11−1· · · pnrr−1¢¡

(p1− 1) · · · (pr− 1)¢ .

¬µhJ€

n/2 ≤ φ(n) ≤ n.

(b) ŽJ€u n óJ φ(2n) = φ(n), ‚u n ‰óJ φ(2n) = 2φ(n).

(c) ƒ' n b m Í8²².ó, ŽJ€ 2m | φ(n).

(d) ŽJ€ φ(nm) = nm−1φ(n).

(e) ƒ' m | n, ŽJ€ φ(m) | φ(n) v φ(mn) = mφ(n).

(4) á f, g / multiplicative arithmetic function. váEŒ²ó p |C m ∈ N/b f(pm) = p + 1v g(pm) = pm−1.

(a) u f ∗ g î f õ g Ý convolution, ŽO f ∗ g(100) Â.

(b) uEŒ n ∈ N /b g(n) =P

d|n,d∈Nh(d). ŽO h(100) Â.

Chapter 3. Congruences

(1) ƒ' a, b, c, d ∈ Z v m ∈ N Í c ≡ d (mod m).

(a) á gcd(c, m) = 1, u ac ≡ bd (mod m), ŽJ€ a ≡ b (mod m).

(b) u c õ m !², Ž0Œ×D» ac ≡ bd (mod m) ¬ a 6≡ b (mod m).

(2) ƒ' n ∈ N v n Ý 10 ›î abcabc, Í a, b, c ∈ N v 1 ≤ a ≤ 9

|C 0 ≤ b, c ≤ 9 (»A n = 123123). ŽJ€ 7 | n.

(3) ƒ' a ∈ Z v 2 - a.

(a) ŽJ€ a2 ≡ 1 (mod 8).

(b) Ž1€¬Œ a2 3 modulo 24 ìXbÝ!õv.

(c) uƒ' 3 - a, ŽJ€ a2 ≡ 1 (mod 24).

(4) á gcd(58, 63) = 1, Æá 58 3 modulo 63 ìb¶°D-ô (ÇD3 a ∈ Z¸ÿ 58 × a ≡ 1 (mod 63)). |ìÎbn¶°D-ô®Þ.

(a) Ž¿à»8t°0Œ 58x + 63y = 1 Ý×àJóŠ. ¬µh0Œ 58 3 modulo 63 ìݶ°D-ô.

(b) Ž0Œ b ∈ Z v”• 1 ≤ b ≤ 63, ¸ÿ 58 × b ≡ 47 (mod 63).

———————————– 10 April, 2008

(6)

(5) ƒ' p ≥ 5 Î×Ͳó, ŽJ€

{−(p − 1)

2 ,−(p − 3)

2 , . . . , −2, −1, 1, 2, . . . ,p − 3 2 ,p − 1

2 } Î×Í reduced residue system modulo p.

(6) |ìÎbn Euler’s Theorem ÝTà.

(a) ŽO 99999999 t| 26 Ýõó.

(b) ƒ' n ∈ Z v 3 - n. ŽJ€ 9 | n7− n¬µhJ€ n7≡ n (mod 63).

(c) ƒ' m, n ∈ N v gcd(m, n) = 1. ŽJ€ mφ(n)+nφ(m)≡ 1 (mod mn).

(7) |ìÎbn Fermat’s Little Theorem ÝTà.

(a) ŽJ€ 11 Jt 456654+ 123321.

(b) ƒ' p Îײóv a, b ∈ Z ”• p - a |C p - b. ŽJ€u ap ≡ bp (mod p)J a ≡ b (mod p), ¬µhJ€u ap ≡ bp (mod p)J ap ≡ bp (mod p2).

(c) ƒ' p, q Î8²²óv”• p − 1 | q − 1. ŽJ€u a ∈ Z v gcd(a, pq) = 1, J aq−1≡ 1 (mod pq).

(8) Ž¿à Fermat’s Little Theorem 0Œ 11 3 modulo 29 ݶ°D-ô, ¬ µhŠ 11x ≡ 15 (mod 29).

(9) ƒ' p Î×Ͳó.

(a) ŽJ€u a ∈ N ”• (p − 1)/2 < a < p, JD3 b ∈ N ”• 1 ≤ b ≤ (p − 1)/2¸ÿ a ≡ −b (mod p). µh|C Wilson’s Theorem J€

(p − 1

2 !)2 ≡ (−1)(p+1)/2 (mod p).

(b) ŽJ€u a Îó”• 1 ≤ a < p−1, JD3‰ó b ”• 1 < b ≤ p−1

¸ÿ a ≡ −b (mod p). µh|C Wilson’s Theorem J€

123252· · · (p − 4)2(p − 2)2 ≡ (−1)(p+1)/2 (mod p).

(c) ¿àGËޔŒJ€ p ≡ 1 (mod 4) ` congruence equation x2≡ −1 (mod p) bŠ.

(10) ƒ' m ∈ N v m > 2. u {r1, r2, . . . , rφ(m)} Î×Í modulo m ìÝ reduced residue system,ŽJ€ r1+ r2+ · · · + rφ(m)≡ 0 (mod m).

———————————– 17 April, 2008

(7)

Chapter 4. Congruence Equations 7

Chapter 4. Congruence Equations (1) ƒ p ײó.

(a) ƒ' f(x) = anxn+· · ·+a1x+a0 Í ai ∈ Z. uD3 r1, . . . , rn+1∈ Z

”• f(ri) ≡ 0 (mod p)vEŒ i 6= j /b ri 6≡ rj (mod p), ŽJ€

EXb 0 ≤ i ≤ n /b p | ai.

(b) Ê g(x) = (x − 1)(x − 2) · · · (x − (p − 1)) − (xp−1 − 1). ŽJ€

g(x) = ap−2xp−2+ · · · + a1x + a0,ÍEXb 0 ≤ i ≤ p − 2 /b p | ai. (c) Ž¿à (b) ”ŒJ€ Wilson’s Theorem.

(2) Š congruence equation Ý]°ô.ÂÕ9Žó94Pݵ.

(a) ƒ' f(x, y) ∈ Z[x, y] | x, y ŽóÝJ;ó94P. ŽJ€u m0 | m v f(x, y) ≡ 0 (mod m0) PJóŠ, J f(x, y) ≡ 0 (mod m) PJóŠ.

(b) ŽJ€ congruence equation 3x2− 7y2≡ 2 (mod 525)PJóŠ.

(3) ŽŠ|ìÝ congruence equation.

(a) O 9x ≡ 21 (mod 30) 3 modulo 30 ìÝXbŠ.

(b) O 18x ≡ 15 (mod 27) 3 modulo 27 ìÝXbŠ.

(4) Š×gÝ congruence equation Ý]°ô.ÂՊ9ŽóÝ×g congruence equation.

(a) Ê congruence equation a1x+a2y ≡ b (mod m). ƒ d = gcd(a1, a2, m).

ŽJ€u d - b, Jh congruence equation PŠ, ‚u d | b, Jh con- gruence equation 3 modulo m ìb dm àŠ.

(b) ŽŠ|ìÝ congruence equation:

(1) 2x + 3y ≡ 4 (mod 7); (2) 3x + 6y ≡ 2 (mod 9).

(c) ŽÞ (a) ݔŒ.ÂÕ n ͎óÝ×g congruence equation.

(5) ŽŠ: (a)







x ≡ 1 (mod 3) x ≡ 2 (mod 4) x ≡ 3 (mod 5) x ≡ 4 (mod 7)

(b)



5x ≡ 3 (mod 7) 2x ≡ 4 (mod 8) 3x ≡ 6 (mod 9)

(c) x2 ≡ x (mod 525).

(6) »yõ§ô.ÂÕ!²Ýµ.

(a) ŽJ€

½ x ≡ b1 (mod m1)

x ≡ b2 (mod m2) bÐñŠuv°ugcd(m1, m2) | b1− b2.

¬J€ubŠJ͊3 modulo lcm(m1, m2)ì°×.

(b) ŽO|ìÐñŠ: (a)

½ x ≡ 3 (mod 4) x ≡ 1 (mod 6) (b)

½ x ≡ 7 (mod 16) x ≡ 3 (mod 24) (c) ŽÞ (a) ݔŒ.ÂÕ n ÍÐñPÝ.

———————————– 01 May, 2008

(8)

Chapter 5. ÞgÝ Congruence Equations

(1) Ž¿àg]°Š|ìÞgÝ congruence equations.

(a) x2+ x ≡ 3 (mod 13) (b) 2x2+ x ≡ 3 (mod 39)

(c) 3x2+ x ≡ 3 (mod 39)

(2) ŽŠ|ìÞgÝ congruence equations.

(a) x2≡ 21 (mod 4) (b) x2≡ 21 (mod 32)

(c) x2≡ 33 (mod 64) (d) x2≡ 40 (mod 64) (e) 2x2 ≡ 40 (mod 32) (f) 2x2 ≡ 40 (mod 64)

(3) ŽŠ|ìÞgÝ congruence equations.

(a) x2≡ 21 (mod 9) (b) x2≡ 18 (mod 27)

(c) x2≡ 31 (mod 81)

(4) ŽŠ|ìÞgÝ congruence equations.

(a) x2+ 7x ≡ 15 (mod 216) (b) x2+ 11x ≡ 18 (mod 216)

———————————– 08 May, 2008

(9)

Chapter 5. ÞgÝ Congruence Equations 9

(5) Ž5½¿à Euler’s Criterion |C Gauss’s Lemma ŒÕ|ì Legendre symbols:

(a) µ11

23

(b) µ−6

11

. (6) ƒ' p Îײó, Ž¿à Gauss’s Lemma J€

µ−1 p

= 1 uv°u p ≡ 1 (mod 4).

(7) ƒ' p Îײó, a, b ∈ Z v p - a, p - b. ŽJ€ ax2 ≡ b (mod p)

uv°u µa

p

¶ µb p

= 1.

(8) ƒ' p Îײó.

(a) ƒ' a, b ∈ Z ŽJ€ a2 ≡ b2 (mod p)uv°u a ≡ ±b (mod p).

(b) ŽJ€

µ1 p

¶ +

µ2 p

+ · · · +

µp − 1 p

= 0.

(c) ŽJ€ p ≡ 1 (mod 4) ` µ1

p

¶ +

µ2 p

+ · · · +

µ(p − 1)/2 p

= 0.

(9) |ì&ƊàDJ°J€ 4k + 1 PݲóbPM9Í. ƒ' p1, . . . , pr ÎXb 4k + 1 Pݲó, ŽJ€u q Îײóv q|4p21· · · p2r+ 1,J q ≡ 1 (mod 4) (Ç q ù 4k + 1 P). µhÿë;‚ÿJ 4k + 1 Pݲó bPM9Í.

———————————– 15 May, 2008

(10)

(10) ŽŒÕ|ìÝ Legendre symbols.

(a)

µ−79 101

(b) µ 91

127

(c)

µ2817 4177

. (11) ƒ' p, q / ²ó.

(a) ŽJu p = 4q + 1, J x2≡ q (mod p) bŠ.

(b) ƒ' p ≡ q ≡ 3 (mod 4). ŽJ x2 ≡ p (mod q)bŠuv°u x2≡ −q (mod p) bŠ.

(c) ŽJ µ−2

p

= 1 uv°u p ≡ 1, 3 (mod 8).

(d) ŽJ µ3

p

= 1 uv°u p ≡ ±1 (mod 12).

(e) Ž0Œ¸ÿ µ−5

p

= 1 ݲó݆Šf.

Chapter 6. Primitive Roots

(1) ŽO|ì order: (a) ord15(8) (b) ord17(9) (2) Ž1€3 modulo 15 õ 16 ìP primitive roots.

(3) ƒ' gcd(ordm(a), ordm(b)) = 1. ŽJ€ ordm(ab) = ordm(a) · ordm(b).

(4) ŽJ€u ordm(a) = m − 1, J m Ä ²ó.

(5) ƒ' a, n ∈ N v a > 1. ŽJ€ ordan−1(a) = n,¬µhÿJ n | φ(an− 1).

———————————– 22 May, 2008

(11)

Chapter 6. Primitive Roots 11

(6) ƒ' m, n ∈ N v gcd(a, mn) = 1.

(a) ŽJ€ lcm(ordm(a), ordn(a)) | ordmn(a).

(b) uêƒ' gcd(m, n) = 1, ŽJ€ ordmn(a) | lcm(ordm(a), ordn(a)). ¬ µhÿJ gcd(m, n) = 1 ` ordmn(a) = lcm(ordm(a), ordn(a)).

(7) á ord101(10) = 4,Ž0Œ3 modulo 101 ìXb order 4 Ý-ô¬

1€§ã.

(8) ƒ p ײóv a modulo p ìÝ×Í primitive root.

(a) u b ∈ Z ”• ab ≡ 1 (mod p), ŽJ€ b Î modulo p ìÝ×Í primitive root. µhJ€ p > 3 `Xb3 modulo p ìÝ primitive root ¶”3 modulo p ì congruent to 1.

(b) ŽJ€ Legendre symbol µa

p

= −1.

(c) ŽJ€

ordp(−a) =

½ p − 1, u p ≡ 1 (mod 4);

(p − 1)/2, u p ≡ 3 (mod 4).

(9) Ž0Œ×Jó¸ÍEŒ m ∈ N 3 modulo 13m õ 2 · 13m ì/

primitive root.

———————————– 29 May, 2008

(12)

(10) Ž0Œ3 modulo 486 ì primitive root tÝÑJó.

(11) Ž¾\|ì congruence equation ÎÍbŠ, ubŠŽ¶ìÍXbŠ.

(a) x3≡ 11 (mod 14).

(b) x4≡ 12 (mod 17).

(c) x5≡ 13 (mod 18).

(d) x6≡ 7 (mod 19).

(12) 3|ì&ÞŽ0ŒXbÝJó a ¸Í congruence equation bŠ.

(a) ax9≡ 6 (mod 13).

(b) 7x9 ≡ a (mod 13).

(c) ax12≡ 9 (mod 17).

(d) 8x12≡ a (mod 17).

(13) ƒ p ≥ 5 ²ó.

(a) ŽJ€ x4 ≡ −1 (mod p)bŠuv°u p ≡ 1 (mod 8).

(b) ƒ' p ≡ 1 (mod 6) v p - a ŽJ€u x3 ≡ a (mod p) bŠ, J3 modulo p ìb 3 Í8²Š.

(c) ƒ' p ≡ 5 (mod 6) ŽJ€ x3 ≡ a (mod p)3 modulo p ìb°×

Š.

———————————– 05 June, 2008

(13)

Chapter 7. ¯— Diophantine Equations 13

Chapter 7. ¯— Diophantine Equations (1) ŽJ€|ì Diophantine equation PŠ.

(a) 3x2− 7y2 = 2.

(b) x2+ y2+ 1 = 4z.

(2) Ž0ŒXb”• z ≤ 50 Ý primitive Pythagorean triples x, y, z.

(3) ƒ' x, y, z Î×à primitive Pythagorean triple.

(a) ŽJ€ x, y ªb×ÍÎ 3 ݹó.

(b) ŽJ€ x, y ªb×ÍÎ 4 ݹó.

(c) ŽJ€ x, y, z ªb×ÍÎ 5 ݹó.

(d) ŽJ€ 60 | xyz

(4) Ž0Œ x2+ 4y2 = z2 ÝXbÑJóŠ.

(5) J€ x4− y4 = z2 ^bÑJóŠ.

(6) ŽJ€u x, y, z Î×à Pythagorean triple J x, y, z t9Gb×ÍÎJ óÝ¿].

(7) Ž1€|ìJóÎ͝|¶WËÍJóÝ¿]õ, u|ŽÞ¶WËÍ

JóÝ¿]õ.

(a) 207 (b) 637 (c) 522 (d) 605

———————————– 12 June, 2008

參考文獻