• 沒有找到結果。

Chapter 7. Conclusions and Future Works

7.2. Future Works

In this dissertation, five I/O circuits realized with low-voltage devices for high-voltage applications have been presented. However, the traditional electrostatic discharge (ESD) protection circuits are not suitable for these applications. In addition, the more robust ESD protection circuits are required in the nanometer processes. Therefore, new ESD protection circuits realized in low-voltage processes must be developed in the future.

Although the DC overstress on the gate oxide is more harmful than AC overstress, the operation frequency becomes higher in the advanced ICs. The AC overstress is also an important issue when the operation frequency is high. Thus, not only the DC overstress on the gate oxide but also the AC overstress must be considered in the high-voltage circuits realized with low-voltage devices in the future IC design.

Due to the trends of SOC and CMOS technology, more circuits will be deigned with low-voltage processes and integrated in a single chip. Thus, not only the I/O circuits and charge pump circuits but also other circuits, such as OPAMP (operational amplifier), ADC (analog-to-digital converter), and so on, must be designed in low-voltage CMOS processes for high-voltage applications. Such design topic still continues to the future research.

References

[1] Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors (ITRS), 2005.

[2] R. S. Scott, N. A. Dumin, T. W. Hughes, D. J. Dumin, and B. T. Moore, “Properties of high-voltage stress generated traps in thin silicon oxide,” IEEE Trans. Electron Devices, vol. 43, no. 7, pp. 1133−1143, July 1996.

[3] H. Iwai and H. S. Momose, “Ultra-thin gate oxides-performance and reliability,” in IEDM. Tech. Dig., 1998, pp. 163−166.

[4] J. H. Stathis, “Gate-oxide reliability for nano-scale CMOS,” in Proc. Int. Symp. Physcial and Failure Analysis of Integrated Circuits, 2005, pp. 127−130.

[5] J. S. Suehle, “Ultrathin gate oxide reliability: physical models, statistics, and characterization,” IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 958−971, June 2002.

[6] Y. Leblebici, “Design consideration for CMOS digital circuits with improved hot-carrier reliability,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 1014−1024, July 1996.

[7] J. Y. Choi, P. K. Ko, and C. Hu, “Hot-carrier-induced MOSFET degradation under AC stress,” IEEE Electron Device Lett., vol. 8, no. 8, pp. 333−335, Aug. 1987.

[8] E. R. Minami, S. B. Kuusinen, E. Rosenbaum, P. K. Ko, and C. Hu, “Circuit-level simulation of TDDB failure in digital CMOS circuits,” IEEE Trans. Semiconduct.

Manufact., vol. 8, no. 3, pp. 370−377, Aug. 1995.

[9] A. M. Yassine, H. E. Nariman, M. McBride, M. Uzer, and K. R. Olasupo, “Time dependent breakdown of ultrathin gate oxide,” IEEE Trans. Electron Devices, vol. 47, no.

7, pp. 1416−1420, Jul. 2000.

[10] K.-H. Lee, B. R. Jones, C. Burke, L. V. Tran, J. A. Shimer, and M. L. Chen, “Lightly doped drain structure for advanced CMOS (Twin-Tub IV),” in IEDM Tech. Dig., 1985, 242−245.

[11] T.-Y. Huang, I-W. Wu, and J. Y. Chen, “A MOS transistor with self-aligned polysilicon source-drain,” IEEE Electron Device Lett., vol. 7, no.5, pp. 314−316, May 1986.

[12] M.-L. Chen, C.-W. Leung, W. T. Cochran, W. Hungling, C. Dziuba, and T. Yang,

“Suppression of Hot-Carrier Effects in Submicrometer CMOS Technology,” IEEE Trans.

Electron Devices, vol. 35, no. 12, pp. 2210−2220, Dec. 1988.

[13] I.-C. Chen, J. Y. Choi, and C. Hu, “The effect of channel hot-carrier stressing on

gate-oxide integrity in MOSFETs,” IEEE Trans. Electron Devices, vol. 35, no.12, pp.

2253−2258, Dec. 1988.

[14] J.-S. Chen and M.-D. Ker, “Impact of MOSFET gate-oxide reliability on CMOS operational amplifiers in a 130-nm low-voltage CMOS process,” in Proc. IEEE Int.

Reliability Physics Symp., 2005, pp. 423−430.

[15] A.-J. Annema, G. Geelen, and P. C. De Jong, “5.5-V I/O in a 2.5-V 0.25-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 528−538, Mar. 2001.

[16] B. Serneels, T. Piessens, M. Steyaert, and W. Dehaene, “A high-voltage output driver in a standard 2.5V 0.25µm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig.

Tech. Papers, 2004, pp. 146–147.

[17] B. Serneels, M. Steyaert, and W. Dehaene, “A 5.5 V SOPA line driver in a standard 1.2 V 0.13 µm CMOS technology,” in Proc. IEEE European Solid-State Circuits Conf., 2005, pp. 303–306.

[18] T. Hasan, T. Lehmann, and C. Y. Kwok, “On-chip high voltage charge pump in standard low voltage process,” Electronics Lett., vol. 41, no. 15, pp. 840−842, July 2005.

[19] J. Williams, “Mixing 3 V and 5 V ICs,” IEEE Spectrum, pp. 40−42, Mar. 1993.

[20] M.-D. Ker and C.-H. Chung, “Electrostatic discharge protection design for mixed-voltage I/O buffers,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1046−1055, Aug. 2002.

[21] A. M. Abo and P. R. Gray, “A 1.5 V, 10 bits 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599−606, May 1999.

[22] J.-B. Park, S.-M. Yoo, S.-W. Kim, Y.-J. Cho, and S.-H. Lee, “A 10-b 150-Msample/s 1.8 V 123-mW CMOS A/D converter with 400-MHz input bandwidth,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1335−1337, Aug. 2004.

[23] M. Takahashi, T. Sakurai, K. Sawada, K. Nogami, M. Ichida, and K. Matsuda, “3.3V-5V compatible I/O circuit without thick gate oxide,” in Proc. IEEE Custom Integrated Circuits Conf., 1992, pp. 23.3.1−23.3.4.

[24] D.-Y. Chen, “Design of a mixed 3.3 V and 5 V PCI I/O buffer,” in Proc. IEEE Int. ASIC Conf., 1996, pp. 336−339.

[25] M. J. M. Pelgrom and E. C. Dijkmans, “A 3/5 V compatible I/O buffer,” IEEE J.

Solid-State Circuits, vol. 30, no. 7, pp. 823−825, July 1995.

[26] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Overview and design of mixed-voltage I/O buffers with low-voltage thin-oxide CMOS transistors,” IEEE Trans. Circuits Syst. I:

Regular Papers, 2006, in press.

[27] R. S. Scott, N. A. Dumin, T. W. Hughes, D. J. Dumin, and B. T. Moore, “Properties of high-voltage stress generated traps in thin silicon oxide,” IEEE Trans. Electron Devices, vol. 43, no. 7, pp. 1133−1143, July 1996.

[28] T. Furukawa, D. Turner, S. Mittl, M. Maloney, R. Serafin, W. Clark, L. Longenbach, and J. Howard, “Accelerated gate-oxide breakdown in mixed-voltage I/O circuits,” in Proc.

IEEE Int. Reliability Physics Symp., 1997, pp. 169−173.

[29] G. P. Singh and R. B. Salem, “High-voltage-tolerant I/O buffers with low-voltage CMOS process,” IEEE J. Solid-State Circuits, vol. 34, no. 11, pp. 1512−1525, Nov. 1999.

[30] K. Bult, “Analog broadband communication circuits in pure digital deep sub-micron CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 1999, pp. 76−77.

[31] S. Poon, C. Atwell, C. Hart, D. Kolar, C. Lage, and B. Yeargain, “A versatile 0.25 micron CMOS technology,” in IEDM. Tech. Dig., 1998, pp. 751−754.

[32] M. Hargrove, S. Crowder, E. Nowak, R. Logan, L. K. Han, H. Ng, A. Ray, D. Sinitsky, P.

Smeys, F. Guarin, J. Oberschmidt, E. Crabbé, D. Yee, and L. Su, “High-performance sub-0.08 µm CMOS with dual gate oxide and 9.7 ps inverter delay,” in IEDM. Tech. Dig., 1998, pp. 627−630.

[33] H.-C. Chow, “Bidirectional buffer for mixed-voltage applications,” in Proc. IEEE Int.

Symp. Circuits Syst., 1999, vol. 1, pp. 270−273.

[34] R. D. Adams, R. C. Flaker, K. S. Gray, and H. L. Kalter, “CMOS off-chip driver circuit,”

U.S. Patent 4782250, Nov. 1, 1988.

[35] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective, 2nd Edition, Prentice Hall, 2003.

[36] M.-D. Ker and W.-Y. Lo, “Methodology on extracting compact layout rules for latchup prevention in deep-submicron bulk CMOS technology,” IEEE Trans. Semiconduct.

Manufact., vol. 16, no. 2, pp. 319−334, May 2003.

[37] S.-L. Chen and M.-D. Ker, “A new Schmitt trigger circuit in a 0.13-μm 1/2.5-V CMOS process to receive 3.3-V input signals,” IEEE Trans. Circuits Syst. II: Express Briefs, vol.

52, no. 7, pp. 361−365, July 2005.

[38] S.-L. Chen and M.-D. Ker, “A new output buffer for 3.3-V PCI-X application in a 0.13-µm 1/2.5-V CMOS process,” in Proc. IEEE Asia-Pacific Conf. Advanced Syst.

Integrated Circuits, 2004, pp. 380−383.

[39] PCI Special Interest Group (PCI-SIG), PCI-X 1.0 Specification, 1999.

[40] O. H. Schmitt, “A thermionic trigger,” J. Science Instruments, vol. 15, pp. 24−26, Jan.

1938.

[41] D. A. Hodges and H. G. Jackson, Analysis and Design of Digital Integrated Circuits, MaGraw-Hill, 1983.

[42] A. Pfister, “Novel CMOS Schmitt trigger with controllable hysteresis,” Electronics Letters, vol. 28, pp. 639−641, Mar. 1992.

[43] J.-B. Kuang and C.-T. Chuang, “PD/SOI CMOS Schmitt trigger circuits with controllable hysteresis,” in Proc. IEEE Int. Symp. VLSI Technology, Syst., Applications, 2001, pp. 283−285.

[44] S. F. Al-Sarawi, “Low-power Schmitt trigger circuit,” Electronics Letters, vol. 38, pp.

1009−1010, Aug. 2002.

[45] D. Kim, J. Kih, and W. Kim, “A new waveform-reshaping circuit: an alternative approach to Schmitt trigger,” IEEE J. Solid-State Circuits, vol. 28, pp. 162−164, Feb.

1993.

[46] M. H. Chang et al., “A highly manufacturable 0.25 µm multiple-Vt dual gate oxide CMOS process for logic/embedded IC foundry technology,” in Symp. VLSI Technology Dig. Tech. Papers, 1998, pp. 150−151.

[47] K.-K. Young et al., “A 0.13 µm CMOS technology with 93 nm lithography and Cu/low-k for high performance applications,” in IEDM Tech. Dig., 2000, pp. 563−566.

[48] C. S. Chang et al., “Extended 0.13 µm CMOS technology for ultra high-speed and MS/RF application segments,” in Symp. VLSI Technology Dig. Tech. Papers, 2003, pp.

68−69.

[49] C.-C. Yu, W.-P. Wang, and B.-D. Liu, “A new level converter for low-power applications, in Proc. IEEE Int. Symp. Circuits Syst., 2001, vol. 1, pp. 113−116.

[50] N. Otsuka and M. A. Horowitz, “Circuit techniques for 1.5-V power supply flash memory,” IEEE J. Solid-State Circuits, vol. 32, no. 8, pp. 1217−1230, Aug. 1997.

[51] Y. Kanno, H. Mizuno, K. Tanaka, and T. Watanabe, “Level converter with high immunity to power-supply bouncing for high-speed sub-1-V LSIs,” in Symp. VLSI Circuits Dig.

Tech. Papers, 2000, pp. 202−203.

[52] W.-T. Wang, M.-D. Ker, M.-C. Chiang, and C.-H. Chen, “Level shifters for high-speed 1-V to 3.3-V interfaces in a 0.13-µm Cu-interconnection/low-k CMOS technology,” in Proc. IEEE Int. Symp. VLSI Technology, Syst., Applications, 2001, pp. 307−310.

[53] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, "Design on mixed-voltage I/O buffer with blocking NMOS and dynamic gate-controlled circuit for high-voltage-tolerant applications," in Proc. IEEE Int. Symp. Circuits Syst., 2005, pp. 1859−1862.

[54] M.-D. Ker and S.-L. Chen, “Mixed-voltage I/O buffer with dynamic gate-bias circuit to achieve 3×VDD input tolerance by using 1×VDD devices and single VDD power supply,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2005, pp. 524−525, 624.

[55] M.-D. Ker, C.-Y. Chang, and H.-C. Jiang, “Design of negative charge pump circuit with polysilicon diodes in a 0.25-µm CMOS process,” in Proc. IEEE Asia-Pacific Conf.

Advanced Syst. Integrated Circuits, 2002, pp. 145−148.

[56] E. R. Minami, S. B. Kuusinen, E. Rosenbaum, P. K. Ko, and C. Hu, “Circuit-level simulation of TDDB failure in digital CMOS circuits,” IEEE Trans. Semiconduct.

Manufact., vol. 8, no. 3, pp. 370−377, Aug. 1995.

[57] R. Moazzami and C. Hu, “Projecting oxide reliability and optimizing burn-in,” IEEE Trans. Electron Devices, vol. 37, no. 7, pp. 1642−1650, July 1990.

[58] M. Kuriyama, S. Atsumi, A. Umezawa, H. Banba, K.-I. Imamiyu, K. Naruke, S. Yamada, E. Obi, M. Oshikiri, T. Suzuki, M. Wada, and S. Tanaka, “A 5V-only 0.6µm flash EEPROM with row decoder scheme in triple-well structure,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, 1992, pp. 152–153.

[59] T. Tanzawa, Y. Takano, K. Watanabe, and S. Atsumi, “High-voltage transistor scaling circuit techniques for high-density negative-gate channel-erasing NOR flash memory,”

IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1318–1325, Oct. 2002.

[60] T. Tanzawa, T. Tanaka, T. Takeuchi, and K. Nakamura, “Circuit techniques for a 1.8-V-only NAND flash memory,” IEEE J. Solid-State Circuits, vol. 37, no. 1, pp. 84–89, Jan. 2002.

[61] T. Kawahara, T. Kobayashi, Y. Jyouno, S.-I. Saeki, N. Miyamoto, T. Adachi, M. Kato, A.

Sato, J. Yugami, H. Kume, and K. Kimura, “Bitline clamped sensing multiplex and accurate high voltage generator for quarter-micron flash memories,” IEEE J. Solid-State Circuits, vol. 31, pp. 1590–1600, Nov. 1996.

[62] R. S. Pierre, “Low-power BiCMOS op-amp with integrated current-mode charge pump,”

IEEE J. Solid-State Circuits, vol. 35, no. 7, pp. 1046–1050, Jul. 2000.

[63] J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. 11, pp.

374–378, Jun. 1976.

[64] J. S. Witters, G. Groeseneken, and H. E. Maes, “Analysis and modeling of on-chip high-voltage generator circuit for use in EEPROM circuits,” IEEE J. Solid-State Circuits, vol. 24, pp. 1372–1380, Oct. 1989.

[65] T. Tanzawa and T. Tanaka, “A dynamic analysis of the Dickson charge pump circuit,”

IEEE J. Solid-State Circuits, vol. 32, pp. 1231–1240, Aug. 1997.

[66] K.-H. Choi, J.-M. Park, J.-K. Kim, T.-S. Jung, and K.-D. Suh, “Floating-well charge pump circuits for sub-2.0V single power supply flash memories,” in Symp. VLSI Circuits Dig. Tech. Papers, 1997, pp. 61–62.

[67] J. Shin, I.-Y. Chung, Y. J. Park, and H. S. Min, “A new charge pump without degradation in threshold voltage due to body effect,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp.

1227–1230, Apr. 2000.

[68] J. C. Chen, T. H. Kuo, L. E. Cleveland, C. K. Chung, N. Leong, Y. K. Kim, T. Akaogi, and Y. Kasa, “A 2.7V only 8Mbx16 NOR flash memory,” in Symp. VLSI Circuits Dig.

Tech. Papers, 1996, pp. 172–173.

[69] K. Sawada, Y. Sugawara, and S. Masui, “An on-chip high-voltage generator circuit for EEPROMs with a power supply voltage below 2V,” in Symp. VLSI Circuits Dig. Tech.

Papers, 1992, pp. 75–76.

[70] S. Atsumi, M. Kuriyama, A. Umezawa, H. Banba, K. Naruke, S. Yamada, Y. Ohshima, M. Oshikiri, Y. Hiura, T. Yamane, and K. Toshikawa, “A 16-Mb flash EEPROM with a new self-data-refresh for a sector erase operation,” IEEE J. Solid-State Circuits, vol. 29, no. 4, pp. 461–469, Apr. 1998.

[71] H. Lin and N.-H. Chen, “New four-phase generation circuits for low-voltage charge pumps,” in Proc. IEEE Int. Symp. Circuits Syst., 2001, vol. I, pp. 504–507.

[72] S.-Y. Lai and J.-S. Wang, “A high-efficiency CMOS charge pump circuit,” in Proc. IEEE Int. Symp. Circuits Syst., 2001, vol. IV, pp. 406–409.

[73] H. Lin, K.-H. Chang, and S.-C. Wong, “Novel high positive and negative pumping circuits for low supply voltage,” in Proc. IEEE Int. Symp. Circuits Syst., 1999, vol. I, pp.

238–241.

[74] C. Lauterbach, W. Weber, and D. Rőmer, “Charge sharing concept and new clocking scheme for power efficiency and electromagnetic emission improvement of boosted charge pumps,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 719–723, May 2000.

[75] J.-T. Wu and K.-L. Chang, “MOS charge pump for low-voltage operation,” IEEE J.

Solid-State Circuits, vol. 33, no. 4, pp. 592–597, Apr. 1998.

[76] B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P. J. Roussel, and G.

Groeseneken, “Impact of MOSFET gate oxide breakdown on digital circuit operation and reliability,” IEEE Trans. Electron Devices, vol. 49, pp. 500−506, Mar. 2002.

[77] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “A new charge pump circuit dealing with gate-oxide reliability issue in low-voltage processes,” in Proc. IEEE Int. Symp. Circuits Syst., 2004, vol. I, pp. 321–324.

[78] R. Perigny, U.-K. Moon, and G. Temes, “Area efficient CMOS charge pump circuits,” in Proc. IEEE Int. Symp. Circuits Syst., 2001, vol. I, pp. 492–495.

[79] M. R. Hoque, T. McNutt, J. Zhang, A. Mantooth, and M. Mojarradi, “A high voltage Dickson charge pump in SOI CMOS, in Proc. IEEE Custom Integrated Circuits Conf., 2003, pp. 493–496.

[80] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage process,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp, 1100–1107, May 2006.

[81] J.-S. Wang, H.-Y. Li, C. Yeh, and T.-F. Chen, “Design technique for single-low-VDD CMOS systems,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1157–1165, May 2005.

[82] M. R. Hoque, T. Ahmad, T. McNutt, A. Mantooth, and M. Mojarradi, “Design technique of an on-chip, high-voltage charge pump in SOI,” in Proc. IEEE Symp. Circuits Syst., 2005, pp. 133–136.

[83] J. De Vos, H. De Smet, A. M. De Cubber, and A. Van Calster, “High-voltage CdSe-Ge TFT driver circuits for passive AC-TFEL Displays,” IEEE J. Solid-State Circuits, vol. 34, no. 2, pp. 228–232, Feb. 1999.

[84] K. Muhlemann, “A 30-V row/column driver for flat-panel liquid crystal displays,” IEEE J. Solid-State Circuits, vol. 23, pp. 442–449, Apr. 1988.

[85] C.-Y. Chang and M.-D. Ker, “On-chip ESD protection design for GHz RF integrated circuits by using polysilicon diodes in sub-quarter-micron CMOS process,” in Proc.

IEEE Int. Symp. VLSI Technology Syst. Applications, 2001, pp. 240−243.

[86] G. Palumbo, D. Pappalardo, and M. Gaibotti, “Charge-pump circuits:

power-consumption optimization,” IEEE Trans. Circuits Syst. I, vol. 49, no. 11, pp.

1535−1542, Nov. 2002.

[87] D. Baderna, A. Cabrini, G. Torelli, and M. Pasotti, “Efficiency comparison between doubler and Dickson charge pumps,” in Proc. IEEE Int. Symp. Circuits Syst., 2005, pp.

1891–1894.

[88] Y.-D. Shiu, C.-H. Chunag, and M.-D. Ker, “Investigation on RF characteristics of stacked P-I-N polyslilcon diodes for ESD protection design in 0.18-μm CMOS technology,” in Proc. IEEE Int. Symp. VLSI Technology, Syst., Applications, 2006, pp.

56–57.

[89] P.-H. Yang and J.-S. Wang, “Low-voltage pulsewidth control loops for SOC applications,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1348–1351, Oct. 2002.

[90] W.-M. Lin and H.-Y. Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1366–1369, Aug. 2004.

[91] H. Tanaka, M. Aoki, T. Sakata, S. Kimura, N. Sakashita, H. Hidaka, T. Tachibana, and K.

Kimura, “A precise on-chip voltage generator for gigascale DRAM with negative word-line scheme,” IEEE J. Solid-State Circuits, vol. 34, no. 8, pp. 1084–1090, 1999.

[92] S.-E. Kim, S.-J. Song, J.-K. Kim, S. Kim, J.-Y. Lee, and H.-J. Yoo, “A small ripple regulated charge pump with automatic pumping control schemes,” in Proc. IEEE European Solid-State Circuits Conference, 2004, pp. 383–386.

VITA

姓 名:陳世倫 (Shih-Lun Chen) 性 別:男

出生日期:民國 65 年 10 月 13 日 出 生 地:台北市

住 址:台北市松山區吉仁里 1 鄰八德路 3 段 120 號 6 樓

學 歷:私立輔仁大學電子工程系畢業 (84 年 9 月 - 88 年 6 月)

私立輔仁大學電子工程系碩士班畢業 (88 年 9 月 - 90 年 6 月) 國立交通大學電子研究所博士班 (90 年 9 月入學)

論文名稱:低電壓互補式金氧半製程下的高電壓電路設計

High-Voltage Circuit Design in Low-Voltage CMOS Processes

PUBLICATION LIST

(A) Regular Journal Papers

[1] H.-Y. Huang and Shih-Lun Chen, “Interconnect accelerating techniques for sub-100 nm giga-scale systems,” IEEE Trans. VLSI Systems, vol.12, pp. 1192−1200, Nov.

2004.

[2] M.-D. Ker, Shih-Lun Chen, and C.-S. Tsai, “Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage process,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1100−1107, May 2006.

[3] M.-D. Ker, Shih-Lun Chen, and C.-S. Tsai, “Overview and design of mixed-voltage I/O buffers with low-voltage thin-oxide CMOS transistors,” IEEE Trans. Circuits Syst. I: Regular Papers, in press, 2006.

[4] M.-D. Ker and Shih-Lun Chen, “Design of mixed-voltage I/O buffer by using NMOS-blocking technique,” IEEE J. Solid-State Circuits, in press, 2006.

(B) Brief Journal Papers

[1] Shih-Lun Chen and M.-D. Ker, “A new Schmitt trigger circuit in a 0.13-μm 1/2.5-V CMOS process to receive 3.3-V input signals,” IEEE Trans. Circuits Syst. II:

Express Briefs, vol. 52, no. 7, pp. 361−365, July 2005.

[2] Shih-Lun Chen and M.-D. Ker, “An output buffer for 3.3-V applications in a 0.13-μm 1/2.5-V CMOS process,” Revised by IEEE Trans. Circuits Syst. II: Express Briefs.

[3] M.-D. Ker and Shih-Lun Chen, “Ultra-high-voltage charge pump circuit in low-voltage bulk CMOS processes with polysilicon diodes,” Accepted by IEEE Trans. Circuits Syst. II: Express Briefs.

(C) International Conference Papers

[1] H.-Y. Huang and Shih-Lun Chen, “Input isolated sense amplifiers,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Scottsdale, Arizona, USA, May 2002, vol. 4, pp.

587−590.

[2] H.-Y. Huang and Shih-Lun Chen, “Self-isolated gain-enhanced sense amplifier,” in Proc. IEEE Asia-Pacific Conf. ASIC (AP-ASIC), Taipei, Taiwan, Aug. 2002, pp, 57−60.

[3] H.-Y. Huang and Shih-Lun Chen, “High-speed receivers for on-chip interconnections in deep-submicron process,” in Proc. IEEE Int. Conf. Electronics, Circuits, Syst. (ICECS), Sept. 2002, vol. 2, pp. 769−772.

[4] H.-Y. Huang and Shih-Lun Chen, “Threshold triggers and accelerator for deep submicron interconnection,” in Proc. IEEE Asia-Pacific Conf. Circuits Syst.

(APCCAS), Oct. 2002, vol. 2, pp. 143−146.

[5] M.-D. Ker, Shih-Lun Chen, and C.-S. Tsai, “A new charge pump circuit dealing with gate-oxide reliability issue in low-voltage process,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS), Vancouver, British Columbia, Canada, May 2004, vol. 1, pp.

321−325.

[6] Shih-Lun Chen and M.-D. Ker, “A new Schmitt trigger circuit in a 0.13 μm 1/2.5 V CMOS process to receive 3.3 V input signals,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Vancouver, British Columbia, Canada, May 2004, vol. 2, pp.

573−576.

[7] Shih-Lun Chen and M.-D. Ker, “A new output buffer for 3.3-V PCI-X

applications in a 0.13 μm 1/2.5 V CMOS process,” in Proc. IEEE Asia-Pacific conf.

ASIC (AP-ASIC), Fukuoka, Japan. Aug. 2004, pp. 112−115.

[8] H.-Y. Huang, C.-C. Wu, and Shih-Lun Chen, “Simultaneous current-mode bi-directional signaling for on-chip interconnection,” in Proc. IEEE Asia-Pacific conf. ASIC (AP-ASIC), Fukuoka, Japan, 2004, pp. 380−383.

[9] M.-D. Ker and Shih-Lun Chen, “Mixed-voltage I/O buffer with dynamic gate-bias circuit to achieve 3×VDD input tolerance by using 1×VDD devices and single VDD power supply,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 524−525, 614.

[10] M.-D. Ker, Shih-Lun Chen, and C.-S. Tsai, “Design on mixed-voltage I/O buffer with blocking NMOS and dynamic gate-controlled circuit for high-voltage-tolerant applications,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Kobe, Japan, May 2005, pp. 1859−1862.

[11] M.-D. Ker and Shih-Lun Chen, “On-chip high-voltage charge pump circuit in standard CMOS process with polysilicon diodes,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Hsinchu, Taiwan, Nov. 2005, pp.157−160.

(D) Local Conference Papers

[1] H.-Y. Huang and Shih-Lun Chen, “Sense amplifiers for high-speed interconnection design,” in Proc. 12th VLSI Design/CAD Symp., Hsinchu, Taiwan, Aug. 2001.

[2] H.-Y. Huang and Shih-Lun Chen, “Deep submicron interconnection triggers and accelerator,” in Proc. 13th VLSI Design/CAD Symp., Taitung, Taiwan, Aug. 2002.

[3] Shih-Lun Chen and M.-D. Ker, “Schmitt trigger circuit realized by only thin-gate-oxide devices to receive high-voltage input signals in a 0.13-μm CMOS process,” in Proc. 15th VLSI Design/CAD Symp., Kenting, Taiwan, Aug. 2004.

[4] H.-Y. Huang, C.-C. Wu, and Shih-Lun Chen, “Simultaneous current-mode bi-directional transceiver,” in Proc. 15th VLSI Design/CAD Symp., Kenting, Taiwan, Aug. 2004.

(E) U.S. Patents

[1] H.-Y. Huang and Shih-Lun Chen, “Apparatus for capacitor-coupling acceleration,”

U.S. Patent 6850089, Feb. 1, 2005.

[2] Shih-Lun Chen and M.-D. Ker, “Output buffer with low-voltage devices to drive high-voltage signals for PCI-X applications,” U.S. Patent 7046036, May 16, 2006.

[3] Shih-Lun Chen and M.-D. Ker, “Schmitt trigger circuit realized with low-voltage devices for high-voltage signal application,” U.S. Patent pending.

[4] M.-D. Ker and Shih-Lun Chen, “Mixed-voltage I/O buffer with low-voltage devices,” U.S. Patent pending.

[5] M.-D. Ker and Shih-Lun Chen, “Small output ripple charge pump regulator by using multi-phase clock signals,” U.S. Patent pending.

[5] M.-D. Ker and Shih-Lun Chen, “Small output ripple charge pump regulator by using multi-phase clock signals,” U.S. Patent pending.