• 沒有找到結果。

九年一貫課程「自然與生活科技」領域科學探究能力之培養研究-子計畫二:科學探究能力之評量(III)

N/A
N/A
Protected

Academic year: 2021

Share "九年一貫課程「自然與生活科技」領域科學探究能力之培養研究-子計畫二:科學探究能力之評量(III)"

Copied!
110
0
0

加載中.... (立即查看全文)

全文

(1)
(2)
(3)
(4)

Abstract

The main purpose of this three-year study was to develop and validate multiple assessment of scientific inquiry for nine-year-sequencecurriculum in thedomain of“scienceand life-technology” of primary schools. The study adopted action research and invited five elementary science teachers to participate in the study. At the beginning, the study held workshops for teacher enhancement, analyzed thetextbooksand concepts,and explored students’experiencesrelated to learning.In addition,thestudy developed the“teaching objectsofscientificinquiry”according to the “Capability Indicators relating to abilities of scientific inquiry in the Nine-Year-Sequence

Curriculum”and relating references.According theabove,thestudy developed multipleassessment of scientific inquiry.

The multiple assessment of scientific inquiry designed in this study was applied to researcher teachers’classroom in orderto exploreproblems/solutions,practices/changes,and impactwhen the teachers teach science with the implement of multiple assessment. According above data, the

research revised the preliminary multiple assessment. Then, the final multiple assessement was applied to classroom teaching in order to analyse the practicability, implicit values, and social consequence of the multiple assessment in real teaching situation.

(5)
(6)
(7)

圖 次

圖 1:科學探究實作評量之研究歷程 18

圖 2:無法繪製表格 41

圖 3:變項呈現有暇疵 41

(8)
(9)

壹、前言

一、研究背景

回顧過去的十年間,呼籲從事教育改革的聲音在科學教育界內,有增多的趨勢(例如, AAAS, 1989; National Science Teachers Association [NSTA], 1992)。在這些教革聲浪中最大的 關注焦點之一為增進科學的教學與學習(高慧蓮、蘇明洲,2000)。 傳統的科學教學實務注重機械性的背誦學習、內容/工作的涵蓋、升學準備、和知識的傳 輸,而不注重讓學生學習和了解科學概念的有意義學習。科學教師非常依賴教科書,以及強 調監控學生的座位工作(seatwork)和「他們自己的教學談話」(Goodlad, 1983),偶而教師 會問學生一些問題,但這些問題大多是收斂式的(convergent)、和只需要學生一個字或非常 短的回應。在科學教室內,科學知識是”從老師滿載知識的頭腦容器內,傾倒入學生頭腦的空 容器中”(Tobin, Briscoe, & Holman, 1990)。傳統的教學實務中,老師扮演控制者的角色,大 多數老師的主要任務為準備學生使之能在標準化的測驗卷裡表現良好。另一方面,在傳統科 學教室內,學生大多被要求去學習教科書中的事實和運算法則,並記憶和回憶它們。在日常 生活的實際情境中,學生很少應用和綜合被教的科學概念。根據 Yager(1992)的研究報導, 超過 90﹪的高中畢業生不會運用(use and act upon)在學校內所學過的科學概念。

實驗室的活動是科學的精華所在,可以允許學生經歷多重感官的經驗。然而很不幸的是, 大多數的實驗室活動,要求學生按照食譜式的步驟描述,一步一步地完成實驗並獲得事先預 設的結果,換句話說,驗證教科書所教導過的事實。

近代的中外科學教育改革如 Project 2061(AAAS, 1989)、Scope, Sequence, and

(10)
(11)

1. 設計與開發國小中、高年級學生科學探究的多元化評量工具。 2. 設計與開發「提昇國小學生對科學探究的能力之多元化評量教學教材」。 3. 預試、評估與修正「提昇國小學生對科學探究的能力之多元化評量教學教材」。 4. 利用科學探究評量工具的實施改進教師科學探究的教學。 5. 探究實施多元化科學探究評量所遭遇的問題與因應策略。 6. 探究實施多元化科學探究評量學生表現的歷程。 7. 探究實施多元化科學探究評量對學生的影響。 8. 效化國小中、高年級學生科學探究之多元化評測工具。 9. 綜合、分析及詮釋各種多元資料,最後提出適切可行之多元化評量模式。

貳、文獻探討

本節擬就科學探究的相關概念、科學探究能力與活動的特徵、和有關科學探究的評量三 大方面探討與本研究相關的理論與文獻:

一、科學探究的相關概念

(一)探究(inquiry)的意涵

英文inquiry是起源拉丁文的in或inward(在….之中)和guaerere(尋找);在『牛津英語 辭典』中提到:探究是尋求知識或訊息特別是尋求真理的活動,「探」就是一種搜尋、研究 或調查探究式檢驗活動;是提出問題與產生疑問的活動。根據『辭海』的解釋是說:探究是 深入探討、是反覆研究。另外,吳兆棠(1966)指出「探究」一詞相當於英文的〝Study〞或 〝Research〞,凡是對於某項事實或者問題加以調查(Investigation)、探詢(Inquiry)、討論 (Discussion)、思考(Thinking),以及分析或綜合之結果,對學術上能有所助益的均算在內。然 而Assessment of Performance Unit(APU)於 1989 年對「探究」一詞所下的定義為「進行無法 立即找到答案,或無現成有規則性可供參考套用的活動(task)」(引自溫存儒,2001)。

探究屬於思考方式的一種(Welch,1981)。人類為了滿足天生的好奇心,不斷的思考, 透過各種方法獲得答案,解決問題(歐陽鍾仁,1987)。因此,人類天生就有探究的本能。 美國國家研究協會(NRC,2000)曾經對人類探究的本質(the nature of humaninquiry)這樣 描述:

(12)
(13)

(strategies)。舉例來說,一位放射線學家所具備的基本技能便包括要能判讀X 光的基本元素, 並且能做口述報告(dictation)(報告結果的標準方法);在概念性理解方面則包括要對正常人體 解剖具備一個心智模式(mental model),以及對於不同疾病、手術操作和外傷等在解剖學組織 上所具影響之理解;至於策略方面則包括能夠在診斷時儘可能嘗試去蒐集最多的資料,並且 能有系統地評估那些具有競爭性的假設(competing hypotheses)(引自簡聿成,2000)。

(三)綜合評述

科學探究是科學家用來研究自然界並獲取知識的一種有系統的方法。它包括科學家如何 形成科學知識的過程,科學探究過程所使用的科學過程技能,以及人類在科學探究過程中解 決問題及邏輯思考。而科學探究的方法並非單一的,而且沒有固定的程序和步驟。即使在一 個特定領域中,科學探究可能包含多種不同的探究類型。 從新科學哲學觀所帶來的啟示,許多科學教育學者建議學校內的科學教學活動,應能真 實的反應從事科學探究的精神。然而許多的研究顯示科學教室中科學探究的發展與應用仍然 是沒有落實的。 我國九年一貫課程「自然與生活科技」領域之學習強調應以探究和實作的方式來進行, 強調手腦並用、活動導向、設計與製作兼顧知能與態度並重。是故,科學教師應以探究與解 決問題的方式進行科學教學,並鼓勵學生主動參與科學的學習與探究,提出更多不同的想法。

二、科學探究能力與活動的特徵

(一)科學探究的能力

(14)
(15)
(16)

理、(4)指出超越證據的敘述、和(5)提議對於相同觀察的另有解釋。分享解釋可以產 生更多的問題或加強學生在證據、現存的科學知識和他們所提出的解釋之間所做的連 結。因此,學生能解決矛盾並強化自己以經驗為基礎的論證。這個特徵依學生自主的 程度由多到寡分成四個層次:(1)學習者形成合理的、合邏輯的論證以傳達解釋,(2) 學習者被指導發展傳達,(3)學習者被提供概括的指導方針以形成傳達,(4)學習者被 給予傳達的步驟和程序。 表 1:教室探究必備特徵與它們的差異 基本的特徵 差異 1. 學習者提出 科學導向的 問題 學習者提出問題 學習者在許多問 題中挑選問題, 提出新的問題 學習者修改 (sharpen)或澄 清由老師、教材 或是其他來源所 提供的問題 學習者從事由老 師、教材或是其 他資料所提供的 問題 2. 學習者決定 收集證據的 方法以應所 提出的問題 由學習者自己決 定收集證據的方 法並收集 學習者被引導收 集特定的證據 學習者被給予資 料並被要求分析 學習者被給予資 料並被告訴如何 分析 3. 學習者從證 據中形成解 釋來回答所 提出的問題 學習者在歸納證 據後形成解釋 學習者被引導從 證據中形成解釋 學習者被給予許 多可能的方法來 使用證據形成解 釋 學習者被提供證 據 4. 學習者連結 自己的解釋 到科學的知 識 學習者獨立檢驗 其他資源並且與 自己的解釋形成 連結 學習者被引導進 入科學知識的領 域和來源 學習者被給予可 能的連結 5. 學習者傳達 並辯證所提 出的解釋 學習者形成合理 的、合邏輯的論 證以傳達解釋 學習者被指導發 展傳達 學習者被提供概 括的指導方針以 形成傳達 學習者被給予傳 達的步驟和程序

(資料來自 Inquiry and the National Science Education Standards, NRC, 2000) 學習者自我引導的量

多 少

來自教師或是教材引導的量

(17)

美國國家科學教育標準提出提昇科學探究所強調的重點與以往有所不同(National Research Council, 1996),如下表 2 所示:

表 2:提昇科學探究所強調的重點(National Research Council, 1996)

 較少強調  較多強調 1. 科學探究活動挶限在一節課 2. 得到答案 3. 進行較少的探究以便留下時間來完成大 量的內容的學習 4. 學生的想法僅與老師在私底下溝通 5. 僅對科學內容的問題提供答案 1. 科學探究活動超過一節課 2. 使用證據與策略來發展或修改解釋 3. 進行多的探究以伋展、探究的價值與科 學內容知識 4. 學生的想法與學生的作品有公開的溝通 5. 溝通科學的解釋

美國 Oregon Department of Education 研發一份科學探究活動評量的判準,其科學探究活 動包含了下列的四個特徵:

1. 形成問題或假設(Forming a Question or Hypothesis) 2. 設計一個探究活動(Designing an Investigation) 3. 收集與呈現資料(Collecting and Presenting Data) 4. 分析與詮釋結果(Analyzing and Interpreting Results)

(18)

考慮到的項目或細節,以及自己去思考與設計如何解決這些問題。 Roth(1995)提出科學家在進行科學探究歷程的五個特質: 1. 問題探究的情境中,問題本身往往是定義不明確的。 2. 探究歷程經驗是模糊、不確定的:且科學知識是由社會化磋商形成的。 3. 由既有的有知識狀態朝向可預測的解題歷程。 4. 探究歷程不是孤軍奮鬥,而是同一個團體共用知識實務、資源和對話。 5. 在這個團體裡,每個成員都可能是某知識的專題。 這種探究歷程的環境本質是: 1. 在情境脈絡中學習; 2. 情境脈絡中的問題是模糊、不確定結構組織薄弱的; 3. 從事可被預測的、並能引玫某地步狀態的歷程; 4. 享有科學社群在知識、實驗、資源、辯論和對話等的經驗。 Roth(1995)經由科學家在進行科學探究歷程的五個特質,提出學生宜有的科學探究學 習歷程包括: 1. 確定問題,思索可能的答案,並嘗試驗證其可能性。 2. 設計科學探究的過程和獲得數據。 3. 根據前有的問題和決策,再形成新的問題。 4. 根據先備知識,進行問題的發展。 5. 將活動經驗與科學概念、原理聯結。 6. 分享及討論研究的過程、決策和作品。

(19)
(20)

釋時,該如何與科學知識做一連結,並沒有列在能力指標中。

三、有關科學探究的評量

(一)過程技能的評量

以往有關科學探究的評量大多為發展統整過程技能的量表,例如Dillashaw & 0key(1980) 設計了「The Test of Integrated Process Skills」,共三十六題,皆為四選一選擇題;或者是利 用量表來評鑑學生的統整科學過程技能,例如Matheis(1992)曾利用測驗卷測量日本和美國北 卡羅來納州(North Carolina)中學生的邏輯思考能力及統整過程技能。然而利用紙筆測驗的量 表來評鑑學生的科學過程技能,並不能和利用真實科學活動來考驗學生統整能力的情況相提 並論,因此也有些研究進一步採用「實作測試」來真實地測驗學生的統整能力,例如國內學 者楊文金(1987)曾以形成假說、設計實驗、資料處理及下結論等四項統整過程技能為目標, 進行實作評量。根據實作格式測驗之研究發現,國民中學各年級之統整過程技能表現,與我 國國小高年級及國中各年級自然科學實驗教材結構有一致性的表現。

(二)科學探究計分規準

以下研究者舉出一份由Oregon Department of Education (2002-2003)所研發而來的五年級 科學探究活動的計分規準。首先是針對評分規準表格中所提到的項目做簡單的介紹,之後將 進一步介紹老師的計分規準。

(A) 科學探究活動的得分指標

科學探究活動的得分指標包含了下列的四個向度: 1. F 架構一個探究活動(Framing the Inverstigation) 2. D 設計一個探究活動 (Designing an Investigation) 3. C 收集與呈現資料 (Collecting and Presenting Data) 4. A 分析與詮釋結果(Analyzing and Interpreting Results)

(B) 分數的計分(Score points)

表 4:科學探究活動分數的計分 Score of 6 Extraordinary achievement 非凡的成就 Score of 5 Thoroughly developed 徹底地發展的

Score of 4 Work is complete and effective 完全的和有效的

Score of 3 Work is partially effective or complete 部份有效的或完整的 Score of 2 Work is underdeveloped 發展不完全

(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)

二、英文部份

Abbagnano, N. (1967). Positivism. In P. Edwards (Ed.), The encyclopedia of philosophy, vol. six. New York: MacMillan.

Abd-El-Khalick, F., & Lederman, N. G. (1998, April). Improving scienceteachers’conceptionsof

the nature of science: A critical review of the literature. Paper presented at the annual meeting

of the National Association for Research in Science Teaching, San Diego, CA.

Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82, 417-436.

Abimbola,I.O.(1983).Therelevanceofthe“new”philosophy ofscience forthescience curriculum. School Science and Mathematics, 83 (3), 181-193.

Akerson, V. L., Abd-El-Khalick, F., & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers’conceptionsofnatureofscience.Journal of Research in Science Teaching, 37, 295-317.

Alters, B. (1997). Whose nature of science? Journal of Research in Science Teaching, 34, 39-55. American Association for the Advancement of Science. (1989). Project 2061: Science for all

Americans. Washington, DC: Author.

American Association for the Advancement of Science. (1993). Project 2061: Benchmarks

forscience literacy. New York: Oxford University Press.

Appenbrink, D., & Hounshell, P. B. (1981). Physical science. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Assessment of Performance Unit (1989). Science at age 11(and13, 15). London, H MSO. Bentley, M. L., & Garrison, J. W. (1991). The role of philosophy of science in science teacher

education. Journal of Science Teacher Education, 2 (3), 67-71.

Birenbaum, M. & Cochy, F. J. R. C. (1996). Alternatives in assessment of achievements, learning

process, and prior knowledge. Boston: Kluwer academic publishers.

Bombaugh, R. (1995). Peace Corps Fellows enter the urban classroom: Learning to teach by the

authority of experience. Doctoral Dissertation, University of Michigan.

Boyd, R. (1991). Confirmation semantics, and the interpretation of scientific theories. In R. Boyd, P. Gasper, & J. D. Trout (Eds.), The philosophy of science. Cambridge: The MIT Press.

Bronowski, J. (1965). Science and human values. New York: Harper and Row Publishers. Bronowski, J. (1966). The identity of man. New York: The Natural History Press.

Bronowski, J. (1978). The origins of knowledge and imagination. New Haven & London: Yale University Press.

Brown, H. I. (1977). Perception, theory and commitment: The new philosophy of science. Chicago: University of Chicago Press.

Burbules, N. C., & Linn, M. C. (1991). Science education and philosophy of science: Congruence or contradiction? International Journal of Science Education, 13, 227-241.

(75)

Columbia University.

California State Board of Education. (1990). Science frame work: For California public schools,

kindergarten through grade twelve. CA: California Department of Education.

Chiang, S. H. (1994). A study on the teaching behavior of beginner science teachers in secondary

school by methods of time series analysis. Taipei, Taiwan: National Science Council.

Chiappetta, E. L., Sethna, G. H., & Fillman, D. A. (1993). Do middle school life science textbooks provide a balance of scientific literacy themes? Journal of Research in Science Teaching, 30, 787-797.

Cleminson, A. (1990). Establishing an epistemological base for science teaching in the light of contemporary notions of the nature of science and of how children learn science. Journal of

Research in Science Teaching, 27 (5), 429-445.

Collette, A. T., & Chiappetta, E. L. (1994). Science instruction in the middle and secondary schools (3rd ed.). New York: Maxwell Macmillan.

Collette, A.T., & Chiappetta, E.C. (1994). Science instruction in the middle and science school, 3, 27-47). Columbas U.S.A.:Merrill.

Cox-Petersen, A. (1999). Investigating the Nature of Science through a Museum Research

Apprenticeship Program. 「1999 科學史、哲與科學教育學術研討暨研習會」論文彙編,

62-64。高雄:國立高雄師範大學物理系。

Dana, T. M., & Davis, N. T. (1993). On considering constructivism for improving mathematics and science teaching and learning. In K. Tobin (Ed.), The practice of constructivism in science

education. Washington: AAAS Press.

DeBore, G. E. (1991). A history of ideas in science education: Implications for practice , 215-241 . Teachers College, Columbia University.

Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of the literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.

Doran, R., Chan, F. & Tamir, P. (1998). Science Educator' s guide to assessment. Virginia: NSTA. Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young People’sImagesofScience.

Buckingham: Open University Press.

Duschl, R. (1990). Restructuring science education: The role of the theories and their importance. New York: Teachers College Press.

Duschl, R. A. (1985). Science education and philosophy of science: Twenty-five years of mutually exclusive development. School Science and Mathematics, 85 (7), 541-555.

Duschl, R. A. (1988). Abandoning the scientistic legacy of science education. Science Education,

72 (1), 51-62.

Eastman, G. (1969). Scientism in science education. The Science Teacher, 36, 19-22. Eisner, E. W. (1985). The educational imagination: On the design and evaluation of school programs (2nd

(76)

Feyerabend, P. (1970). Consolation for the specialists. In I. Lakatos & A. Musgrave (Eds.),

Criticism and the growth of knowledge. Cambridge, England: Cambridge University Press.

Feyerabend, P. (1978). Against method: Outline of an anarchistic theory of knowledge. London: Verso.

Finley, F. N. (1983). Science processes. Journal of Research in Science Teaching, 20, 47-54. Fleury, S. C., & Bentley, M. L. (1991). Educating elementary science teachers: Alternative

conceptions of the nature of science. Teaching Education, 3 (2), 57-66.

Foster, W. G. & Heiting, A. W. (1994). Embedded assessment. Science and Children, October, 30-33.

Fredericksen, J. R. & Collins, A.(1989). A systems approach to educational testing Educational

Researcher, 189, 27-32.

Gallagher, J. J. (1991). Prospective and practicing secondary school science teachers: knowledge and beliefs about the philosophy of science. Science Education, 75(1), 121-133.

Gallagher, J. J. (1993). Secondary science teachers and constructivist practice. In K. Tobin (Ed.),

The practice of constructivism in science education. Washington: AAAS Press.

Gallagher, J. J., Parker, J., & Ngwenya, L. (1999). Embedded assessment and reform in science

teaching and learning. East Lansing, MI: Michigan state University.

Garofalo, J., Lindgren, R., & Neill, T. (1992). Knowledge developed by a high school teacher participating in a physics research experience. Science Education, 76 (1), 43-50.

Garrison, J. W. (1986). Some principles of postpositivistic philosophy of science. Educational

Researcher, 15, 12-18.

Garrison, J. W., & Bentley, M. L. (1990). Teaching scientific method: The logic of confirmation and falsification. School Science and Mathematics, 90 (3), 188-197.

Giroux, H. A. (1992). Border crossing. New York: Routledge.

Good,R.G.,Wandersee,J.H.,& Julien,J.(1993).Cautionary noteson the appealofthenew “ism” (constructivism) in science education. In K. Tobin (Ed.), The practice of constructivism in

science education. Washington: AAAS Press.

Gorman, M. E. (1986). Falsification in experimental and classroom simulations. School Science and

Mathematics, 86 (4), 306-321.

Hand, B., Prain, V., Lawrence, C., & Yore, L. D. (1999). A writing in science framework designed to enhance science literacy. International Journal of Science Education, 21(10), 1021-1035. Hanson, N. R. (1961/1958). Patterns of discovery (2nded.). Cambridge: The University Press.

Hanson, N. R. (1977). Is there a logic of scientific discovery? In B. A. Brody (Ed.), Readings in the

Philosophy of Science. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Harris, K. (1979). Education and knowledge: The structured misrepresentation of reality. London: Routledge and Kegan Paul.

Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

(77)

Education, 12, 25-57.

Hodson, D. (1986). Philosophy of science and science education. Journal of Philosophy of

Education, 20 (2), 215-225.

Hodson, D. (1988). Toward a philosophically more valid science curriculum. Science Education,

72 , 19-40.

Hodson, D. (1988). Toward a philosophically more valid science curriculum. Science Education, 72 (1), 19-44.

Hodson, D. (1993). Teaching and learning about science: considerations in the philosophy and sociology of science. In D. Edwards, E. Scanlon, & D. West (Eds.), Teaching, learning and

assessment in science education. London: Paul Chapman Publishing Ltd, The Open

University.

Hume, D. (1962). Of ideas, their origin, composition, connection, abstraction, etc. In D. G. C. Macnabb (Ed.), A treatise of human nature, Book One. London: Fontana/Collins.

Jorgensen, M. A. & Shymansky, J. A. (1996). Assessment in science: A tool to transform teaching and learning. In J. Rohton, & P. Bowers, (Eds). Issue in Science Education, 107-113, Arlington: NSTA.

Justi R., & Gilbert, J. (2000). History and philosophy of science through models: some challenges in the case of ‘theatom’.International Journal of Science Education, 22, 993-1009.

Kant, I. (1965). Critique of pure reason (translated by Norman Kemp Smith). New York: ST Martin Press.

Kauffman, G. B. (1989). History in the chemistry curriculum. Interchange, 20, 81-94.

Kelly, G. J., Carlsen, W. S., & Cunningham, C. M. (1993). Science education in sociocultural context: Perspectives from the sociology of science. Science Education, 77 (2), 207-220. Kisiel, T., & Johnson, G. (1974). New philosophies of science in the USA. A selective Survey.

Zeitschrift fur allgemeine Wissenschaftstheorie, 5, 138-191.

Krajcik, Blumenfeld, Marx, & Soloway (2000). Instructional, curricular, and technological

supports for inquiry in science classrooms. In Mirstell, J. Uan Zee, E. (Eds.) Inquiry into

inquiry: science learning and teaching. American Association for the Advancement of Science Press, Washington, DC. pp.283-315.

Kuhn, T. S. (1970/1962). The Structure of Scientific Revolutions (2nded.). Chicago: University of

Chicago Press.

Lakatos, I. (1970). Falsification and the methodology of science research programmes. In I. Lakatos, & A. Musgrave (Eds.), Criticism and the growth of knowledge. Cambridge, England:

Cambridge University Press.

Lederman, N. G. (1983). Delineating classroom variablesrelated to students’conceptionsofthe

nature of science. Unpublished doctoral dissertation, Syracuse University.

(78)

tentative than products. Paper presented at National Association for Research in Science

Teaching. St.Lous, MO.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Newbury Park, CA: Sage.

Loving, C. C. (1997). From the summit of truth to its slippery slopes: Science education journey through positivist-postmodern territory. American Educational Research Journal, 34 (3), 421-452.

Lunetta, V. N. (1998). The school science laboratory: historical perspectives and contemporary teaching. In K. Tobin & B. Fraser(Eds.), International handbook of science

education ,249-262.

Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.

Matthews, M. R. (1998). How history and philosophy in the US Science Education Standards could have promoted multidisciplinary teaching. School Science and Mathematics, 98(6), 285-293. Messick, S. (1989). Validity. In R. L. Linn (ed.), Educational Measurement (3rded.) (pp.13103 ).

New York: American Council on Education/Macmillan.

Messick, S.(1992). Validity of test interpretation and use. In M. C. Alkin(Ed.), Encyclepedia of educational research, (pp. 1487-1495). New York: Macmillan.

Miller, R., & Driver, R. (1987). Beyond processes. Studies in Science Education, 14, 33-42. Milne,C.,& Taylor,P.C.(1995).Metaphorsasglobalmarkersforteachers’beliefsaboutthe

nature of science. Research in Science Education, 25 (1), 39-49. Moyer, R., & Bishop, J. (1986). General science. Columbus, OH: Merrill.

Murcia,K.,& Schibeci,R.(1999).Primary studentteachers’conceptionsofthenatureofscience.

International Journal of Science Education, 21(11), 1123-1140.

National Research Council (1996). Naional Science Education Standards. Washington DC: National Academy Press.

National Research Council. (1994). National science education standards: A draft. Washington, DC: National Research Council.

National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

Nersessian, N. J. (1989). Conceptual change in science and in science education. Synthese, 80, 163-183.

Nott, M., & Wellington, J.J. (1997). Producing the evidence: science teachers’initiations into practical work. Research in science Education, 27(3), 395-409.

Nussbaum, J. (1989). Classroom conceptual change: philosophical perspectives. International

Journal of Science Education, 11, 530-540.

Palmeri, A. B. (1995). The consistency between second-gradeteachers’beliefstoward scienceand

their science teaching practice. Doctoral Dissertation: Indiana University.

(79)

University of Chicago Press.

Popham, W. J. (1997). What's wrong--and what's right--with rubrics. Educational Leadership, 55 (2), 72-75.

Popper, K. R. (1968). Conjectures and refutations in the growth of scientific knowledge. New York: Harper Torchbooks.

Puckett, M. B., & Black, J.K.(1994). Authentic assessment of the young child celebrating

development and learning. New York:Macmillan College Publishing Company.

Roth, W. M. (1993). Construction sites: Science labs and classrooms. In K. Tobin (Ed.), The

practice of constructivism in science education. Washington: AAAS Press.

Roth, W. M. (1995). Authentic school science: knowing and learning in open-inquiry science

laboratories. Netherlands: Kluwer Academic Publisher.

Rutherford, F. J., & Ahlgren, A. (1990). Science for all Americans. New York: Oxford University Press.

Sax, G. (1989). Principles of Educational and Psychological Measurement and Evaluation (3rded.). Belmont, CA: Wad- sworth.

Shapere, D. (1987). Method in the philosophy of science and epistemology: How to inquire about inquiry and knowledge. In N. J. Nersessian (Ed.), The process of science: Contemporary

philosophical approaches to understanding scientific practice. Netherlands: Dordrecht.

Shaw, K. L., & Etchberger, M. L. (1993). Transitioning into constructivism: A vignette of a fifth grade teacher. In K. Tobin (Ed.), The practice of constructivism in science education. Washington: AAAS Press.

Smith, M. U., Lederman, N. G., Bell, R. L., McComas, W. F., & Clough, M. P. (1997). How great is the disagreement about the nature of science: A response to Alters. Journal of Research in

Science Teaching, 34 (10), 1101-1103.

Stake, R. E., & Easley, J. A. (1978). Case studies in science education. Urbana, IL: Center for Instructional Research and Curriculum Evaluation, University of Illinois.

Stanley, W. B., & Brickhouse, N. (1994). Multiculturalism, universalism, and science education.

Science Education, 78 (4), 387-398.

Stenhouse, D. (1985). Active philosophy in education and science. Boston, MA: G. Allen & Unwin Ltd.

Stone, L. (1992). Postpositivist teaching; beyond the myth of prediction. Paper presented at the 1992 JUSTEC conference. Tamagawa University, Tokyo.

Terhart, E. (1988). Philosophy of science and school science teaching. International Journal of

Science Education, 10 (1), 11-16.

Tombari, M., & Borich, G.(1999). Authentic assessment in the classroom :Applicationa and

practice. New Jersey:Prentice Hall.

(80)

and human values, 10 (1), 28-37.

Treagust, D. F., Duit, R., & Fraser, B. J. (1996). Overview: Research on students’preinstructional conceptions -- the driving force for improving teaching and learning in science and

mathematics. In D. F. Treagust, R. Duit, & B. J. Fraser (Eds.), Improving teaching and

learning in science and mathematics. New York, London: Teachers College Press, Teachers

College Columbia University.

Wang, H. C. A. (1999). A content analysis of the history of science in the national science

standards documents and four secondary science textbooks. 「1999 科學史、哲與科學教育

學術研討暨研習會」論文彙編,57-61。高雄:國立高雄師範大學物理系。

Wang, J. R. (1995). A casestudy:An investigation ofteachers’conceptionsofthenatureofscience,

science teaching and learning, classroom practices, and other contextual matters. Doctoral

Dissertation: University of Northern Colorado. Wiggins, G. (1998). Educative assessment. San Francisco:

Woolnough, B., & Allsop, T. (1985). Practical work in science. London: Cambridge University Press.

Yager, R. E. (1990). Workshop Science/Technology/Society as Reform in Science Education. Science Education Center, National Taiwan Normal University, Taipei, Taiwan, R. O. C. Yager, R. E. (1994). Science-Technology-Society as Reform. Science Education Center, The

(81)
(82)

11.魯慧敏、蘇明洲和高慧蓮(2007): 培養科學探究能力之闖關遊戲活動設計。論文發表於第 二十三屆中華民國科學教育學術研討會,國立高雄師範大學。(NSC 95-2511-S-153-006) 12. Su, M. C., Kao, H. L., Wang, J. R., & Lin, S. W. (2008). A study of developing two

(83)
(84)

1. 在這個影子國的圖像裡,你覺得哪裡出現問題?請提問!

2. 以前有沒有觀察過影子的現象?並舉例說明。

(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)

附錄、出席國際會議研究心得報告及發表論文

行政院國家科學委員會補助國內專家學者出席國際學術會議報告

96 年 10 月 30 日

報告人姓名

高慧蓮

服務機構

及職稱

國立屏東教育大學應用

化學暨生命科學系教授

會議時間

與地點

November 28 –30,

2006, The Hong

Kong Institute of

Education, HKSAR

本會核定

補助編號

NSC

95-2511-S-153-006-會議名稱

(中文)亞太教育研究學會國際研討會 2006

(英文) Asia-Pacific Educational Research Association

International Conference 2006

發表

論文

題目

(中文) 從多元文化教育的觀點探討影響原住民對科學

概念學習的因素-以國中呼吸作用為例

(96)

報告內容應包括下列各項:

一、 參加會議經過

Asia-Pacific Educational Research Association International Conference 2006 (AERA 2006)於 November 28 –30 在香港教育學院(The Hong Kong Institute of Education)舉行。參 與此次研討會的學者與教師大部分來自亞太地區,然而亦有來自世界各國的學者與教師參 與。AERA 2006 研討會的主要目的是希望從亞太地區以及以外地區的觀點探討全球化的教 育研究、政策與實踐。因為研究者的研究方向契合研討會的主題,所以研究者極有興趣參 予 AERA 2006 研討會。 從屏東到高雄搭機直飛到香港,已是傍晚了。在旅館睡了一覺後,清晨即直接到會場 報到,並聽了幾場亞太地區傑出學者有關全球化的教育研究、政策與實踐的演講,隨後研 究者發表自己的論文,題目為”An Exploration of Factors for Influencing Science Concept Learning of Aboriginal Students from Standpoints of Multicultural Education: Taking

Respiration for Junior High School as anExample”,受到關心多元文化教育的學者及教師熱 烈的討論與給研究者寶貴的意見。接下來幾天就不斷的聽報告,並找一些有興趣議題的作 者交換研究心得。

二、 與會心得

由於此次參與研討會的學者很多會講中文,所以研究者可以很深入的與這些學者就全 球化的教育研究、政策與實踐方面交換意見,讓我獲益良多。這次會議主題有關於 Access and Equity in Education 部份,發表的學者一致認為我們應該為來自不同族群的以及弱

(97)

從多元文化教育的觀點探討影響原住民對科學概念學習的因素-以國中呼

吸作用為例

蘇明洲 大仁科技大學環境資源管理學系,台灣 高慧蓮 國立屏東教育大學應用化學暨生命科學系,台灣 摘要:本研究採取詮釋性研究法,從多元文化教育的觀點,探討屏東縣排灣族部落的家 庭、學校、學童本身、和文化環境等因素,是否會影響學生對科學概念的學習。研究者 進入排灣族部落社區和學校教室進行 3 年的長期、深入的田野觀察,並與學生的父母 親、學校教師和傳教士進行訪談。除此之外,在「呼吸作用」這一單元教學前後,研究 者用「二階段測驗診斷工具」對學生加以施測和晤談,並做課室觀察。根據上述多元資 料,研究者詮釋學生「呼吸作用」概念的學習情況以及影響因素。本研究發現家庭、學 校、學童本身、和文化環境等因素,均會影響學生對科學概念的學習。 【關鍵字】 多元文化教育、排灣族、科學概念

An Exploration of Factors for Influencing Science Concept Learning of

Aboriginal Students from Standpoints of Multicultural Education: Taking

Respiration for Junior High School as an Example

Ming-Chou Su

Department of Environmental Resource Management, Tajen University, Taiwan Huey-Lien Kao

Department of Applied Chemistry and Life Science, National Pingtung University of Education, Taiwan

(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)

89-2511-S-153-020 、 NSC 90-2511-S-153-021 、 NSC 91-2511-S-153-006 、 NSC 92-2522-S-153-016),概念整合型計劃各科總主持人郭重吉教授、鄭湧涇教授、張惠博 教授、邱美虹教授、尤其是生物概念研究總計劃主持人黃台珠教授、林陳涌教授,與生 物小組研究群-熊召弟教授、盧秀琴教授、游淑媚教授、顏瓊芬教授、廖麗貞教授、林 曉雯教授、王靜如教授,所有先進大力協助,特此致謝! 參考文獻

Billeh, V. Y. I. (1969). Cultural bias in the attainment of concepts. The biological cell by

elementary school children. (Doctoral Dissertation, University of Wisconsin),

University Microfilms. A Xerox Company, Ann Arber, Michigan.

Bruner, J. S., Goodnow, J. J, & Austin, G. A. (1956). A Study of thinking. (Eds.), New york: Wiley

Chao, C. C. (1975). A study of conceptual elements involved in two physics terms for students of different cultural backgrounds. Dissertation Abstracts, 35(8), 5146A.

Cobern, W. W. (1996). Worldview theory and conceptual change in science education.

Science Education, 80, 597-610.

Gilbert, J. K., & Watts, M. (1983). Concepts, misconceptions and alternative conception: Changing perspectives in science education. Studies in Science Education, 10, 61-98. Ogborn, J., Kress, G., Martins. I., & McGillicuddy, K. (1996). Explaining science in the

classroom. Buckingham, Philadelphia: Open University Press.

Pfundt, H. & Duit, R. (1991). Bibliography: Students,alternative frameworks and science education. (3rded.). Keil, West Germany: IPN.

(110)

數據

表 2:提昇科學探究所強調的重點(National Research Council, 1996)
表 4:科學探究活動分數的計分 Score of 6 Extraordinary achievement 非凡的成就 Score of 5 Thoroughly developed 徹底地發展的
表 11:四年級學生各題得分百分比 題號 分數 第 1 題 第 2 題 第 3 題 第 4 題 第 5-1 題 第 5-2 題 第 6-1 題 第 6-2 題 3 分 20% 29% 9% 58% 40% 38% 70% 47% 2 分 22% 17% 12% 31% 24% 22% 9% 9% 1 分 51% 30% 35% 4% 14% 16% 7% 19% 0 分 6% 24% 43% 7% 21% 24% 14% 24% 由以上的資料發現,學生在界定問題這方面的能力所得到的分數有八成的學生集中在一

參考文獻

相關文件

二、 自然與生活科技領域之學習

臺中榮民總醫院埔里分院復健科 組長(83年~今) 中山醫學大學復健醫學系職能治療 學士.. 南開科技大學福祉科技與服務管理研究所

數學是科學研究的基本工具,科技發展是臺灣保持國際競爭力的命脈。因此 當今年 2 月,教育部公佈《十二年國民基本教育課程綱要總綱

Krajcik, Czerniak, & Berger (1999) 大力倡導以「專題」為基礎,教導學生學習科 學探究的方法,這種稱之為專題導向的科學學習(Project-Based Science,

主辦單位:建國科技大學工程學院 (教學卓越計畫子計畫

本校為一科技大學,學生之來源大多屬技職體系之職業高中及專科學

配合小學數學科課程的推行,與參與的學校 協作研究及發展 推動 STEM

2-1 化學實驗操作程序的認識 探究能力-問題解決 計劃與執行 2-2 化學實驗數據的解釋 探究能力-問題解決 分析與發現 2-3 化學實驗結果的推論與分析