• 沒有找到結果。

8. Conclusions and Future Works

8.2 Future Works

For the operation of power MOSFETs, it is very often that the transistors’ drain or ground potentials be perturbed greatly, especially when switching with a large current. Noise immunity of the nLDMOS transistors and the impact that comes from the SCR insertion is an important future work thereof. A challenge to this study would be the fact that noises from different systems or applications are case-sensitive, and presently there is no unified standard or platform suitable for device-level measurements. Testing ICs on their system boards is necessary for this noise study on power MOSFETs.

The VPP pin ESD protection design in Chapter 6 has the lowest potential of 0 V because of its application specifications. For ICs with their lowest voltage potentials below 0 V, e.g.

NAND memories, the ESD protection design along with its trigger circuit should be modified and it would be both interesting and useful to implement such an application-oriented ESD protection design.

With the high power supply voltages in HV applications, latchup is an extremely challenging reliability topic. Designing a structure with high latchup immunity has been an important development target in HV ICs for decades. From the research results in Chapter 7, the challenge becomes more stringent and correct measurement techniques to evaluate the latchup immunity of HV transistors are equally important. With the new observed phenomenon, latchup in HV ICs will face new challenges; new physical mechanisms to be discovered as well. Accordingly, latchup is a topic not only intriguing but also valuable to the IC industries, and worthy to put further efforts for future works and developments.

References

[1] B. Baliga, Advanced Power MOSFET Concepts. Springer, 2010.

[2] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits. John Wiley & Sons, 2002.

[3] Electrostatic Discharge (ESD) Sensitivity Testing―Human Body Model (HBM), EIA/JEDEC Standard Test Method 5.1, 2001.

[4] Electrostatic Discharge (ESD) Sensitivity Testing―Machine Model (MM), EIA/JEDEC Standard Test Method 5.2, 1999.

[5] Field-Induced Charged-Device Model Test Method for Electrostatic Discharge Withstand Thresholds of Microelectronic Components, JESD22-C101C, 2004.

[6] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuit for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp.

173–183, 1999.

[7] B. Keppens, M. Mergens, C. Trinh, C. Russ, B. Camp, and K. Verhaege, “ESD protection solutions for high voltage technologies,” in Proc. EOS/ESD Symp., 2004, pp.

289–298.

[8] P. Wessels, M. Swanenberg, H. Zwol, B. Krabbenborg, H. Boezen, M. Berkhout, and A.

Grakist, “Advanced BCD technology for automotive, audio and power applications,”

Solid-State Electronics, vol. 51, no. 2, pp. 195–211, 2007.

[9] S.-H. Chen and M.-D. Ker, “Area-efficient ESD-transient detection circuit with smaller capacitance for on-chip power-rail ESD protection in CMOS ICs,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 5, pp. 359–363, 2009.

[10] M.-D. Ker, W.-Y. Chen, and K.-C. Hsu, “Design on power-rail ESD clamp circuit for 3.3-V I/O interface by using only 1-V/2.5-V low-voltage devices in a 130-nm CMOS

process,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 10, pp. 2187–2193, 2006.

[11] M.-D. Ker and K.-H. Lin, “Overview on electrostatic discharge protection designs for mixed-voltage I/O interfaces: design concept and circuit implementations,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 53, no. 2, pp. 235–246, 2006.

[12] M.-D. Ker and H.-C. Hsu, “ESD protection design for mixed-voltage I/O buffer with substrate-triggered circuit,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 1, pp.

44–53, 2005.

[13] M. Mergens, W. Wilkening, S. Mettler, H. Wolf, A. Stricker, and W. Fichtner, “Analysis of lateral DMOS power devices under ESD stress conditions,” IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 2128–2137, 2000.

[14] M.-D. Ker and W.-J. Chang, “On-chip ESD protection design for automotive vacuum-fluorescent-display (VFD) driver IC to sustain high ESD stress,” IEEE Trans.

Device and Mater. Reliab., vol. 7, no. 3, pp. 438–445, 2007.

[15] G. Boselli, V. Vassilev, and C. Duvvury, “Drain extended nMOS high current behavior and ESD protection strategy for HV applications in sub-100nm CMOS technologies,” in Proc. IEEE Int. Reliab. Phys. Symp., 2007, pp. 342–347.

[16] J.-H. Lee, S.-H. Chen, Y.-T. Tsai, D.-B. Lee, F.-H. Chen, W.-C. Liu, C.-M. Chung, S.-L.

Hsu, J.-R. Shih, A.-Y. Liang, and K. Wu, “The influence of NBL layout and LOCOS space on component ESD and system level ESD for HV-LDMOS,” in Proc. Int. Symp.

Power Semiconductor Devices and ICs, 2007, pp. 173–176.

[17] V. Parthasarathy, V. Khemka, R. Zhu, J. Whitfield, A. Bose, and R. Ida, “A double RESURF LDMOS with drain profile engineering for improved ESD robustness,” IEEE Electron Device Lett., vol. 23, no. 4, pp. 212–214, 2002.

[18] Y.-J. Seo and K.-H. Kim, “Effects of background doping concentration on electrostatic discharge protection of high voltage operating extended drain N-type MOS device,”

Microelectronic Engineering, vol. 84, no. 1, pp. 161–164, 2004.

[19] K.-H. Kim and W.-J. Choi, “Effects of background doping concentration on ESD protection properties of high-voltage operation extended drain N-type MOSFET device,”

in Proc. IEEE Int. Reliab. Phys. Symp., 2007, pp. 334–341.

[20] K. Kawamoto, S. Takahashi, S. Fujino, and I. Shirakawa, “A no-snapback LDMOSFET with automotive ESD endurance,” IEEE Trans. Electron Devices, vol. 49, no. 11, pp.

2047–2053, 2002.

[21] W.-Y. Chen and M.-D. Ker, “High-voltage nLDMOS in waffle-layout style with body-injected technique for ESD protection,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 389–391, 2009.

[22] W.-Y. Chen, M.-D. Ker, Y.-N. Jou, Y.-J. Huang, and G.-L. Lin, “Improvement on ESD robustness of lateral DMOS in high-voltage CMOS ICs by body current injection,” in Proc. IEEE Int. Symp. Circuits and Systems, 2009, pp. 385–388.

[23] A. W. Ludikhuize, “A review of RESURF technology,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 2000, pp. 11–18.

[24] T. Maloney and N. Khurana, “Transmission line pulsing techniques for circuit modeling of ESD phenomena,” in Proc. EOS/ESD Symp., 1985, pp. 49–54.

[25] G. Notermans, O. Quittard, A. Heringa, Ž. Mrčarica, F. Blanc, H. Zwol, T. Smedes, T.

Keller, and P. Jong, “Designing HV active clamps for HBM Robustness,” in Proc.

EOS/ESD Symp., 2007, pp. 47–52.

[26] T.-Y. Chen and M.-D. Ker, “Investigation of the gate-driven effect and substrate-triggered effect on ESD robustness of CMOS devices,” IEEE Trans. Device and Mater. Reliab., vol. 1, no. 4, pp. 190–203, 2001.

[27] M.-D. Ker and J.-H. Chen, “Self-substrate-triggered technique to enhance turn-on uniformity of multi-finger ESD protection devices,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2601–2609, 2006.

[28] M.-D. Ker, T.-Y. Chen, and C.-Y. Wu, “Substrate-triggered ESD clamp devices for using in power-rail ESD clamp circuits,” Solid-State Electronics, vol. 46, no. 5, pp. 721–734, 2002.

[29] T. L. Polgreen and A. Chatterjee, “Improving the ESD failure threshold of silicided n-MOS output transistors by ensuring uniform current,” IEEE Trans. Electron Devices, vol. 39, no. 2, pp. 379–388, 1992.

[30] A. Amerasekera, C. Duvvury, V. Reddy, and M. Rodder, “Substrate triggering and salicide effects on ESD performance and protection circuit design in deep submicron CMOS processes,” in IEDM Tech. Dig., 1995, pp. 547–550.

[31] C. Duvvury, S. Ramaswamy, A. Amerasekera, R. A. Cline, B. H. Andresen, and V. Gupta,

“Substrate pump NMOS for ESD protection applications,” in Proc. EOS/ESD Symp., 2000, pp. 7–17.

[32] P. Hower, “Safe operating area - a new frontier in Ldmos design,” in Proc. IEEE Int.

Symp. Power Semiconductor Devices and ICs, 2002, pp 1–8.

[33] C. Hu and M.-H. Chi, “Second breakdown of vertical power MOSFET's,” IEEE Trans.

Electron Devices, vol. 29, no. 8, pp. 1287–1293, 1982.

[34] S. M. Sze, Physics of Semiconductor Devices. 2nd ed., New York: Wiley, 1981.

[35] P. Moens and G. Van den bosch, “Characterization of total safe operating area of lateral DMOS transistors,” IEEE Trans. Device and Mater. Reliab., vol. 6, no. 3, pp. 349–357, Sept. 2006.

[36] P. Hower, C. Tsai, S. Merchant, T. Efland, S. Pendharkar, R. Steinhoff, and J. Brodsky,

“Avalanche-induced thermal instability in LDMOS transistors,” in Proc. Int. Symp.

Power Semiconductor Devices and ICs, 2001, pp. 153–156.

[37] Y. Chung and B. Baird, “Electrical-thermal coupling mechanism on operating limit of LDMOS transistor,” in IEDM Tech. Dig., 2000, pp. 83–86.

[38] D. Farenc, G. Charitat, P. Dupuy, T. Sicard, I. Pages, and P. Rossel, “Clamped inductive

switching of LDMOST for smart power IC’s,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 1998, pp. 359–362.

[39] B. Khemka, V. Parthasarathy, R. Zhu, and A. Bose, “A novel technique to decouple electrical and thermal effects in SOA limitation of power LDMOSFET,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 705–707, 2004.

[40] Single Pulse Unclamped Inductive Switching (UIS) Avalanche Test Method, JESD 24-5, Oct. 2002.

[41] Method for Repetitive Inductie Load Avalanche Switching, JESD 24-8, Oct. 2002.

[42] Short Circuit Reliability Characterization of Smart Power Devices for 12V Systems, AEC-Q101-006, Sept. 2006.

[43] J. Phipps and K. Gauen, “New insights affect power MOSFET ruggedness,” in Proc.

Applied Power Electronics Conf., 1988, pp. 290–298.

[44] K. Fischer and K. Shenai, “Dynamics of power MOSFET switching under unclamped inductive loading conditions,” IEEE Trans. Electron Devices, vol. 43, no. 6, pp.

1007–1015, 1996.

[45] K. Chinnaswamy, P. Khandelwal, M. Trivedi, and K. Shenai, “Unclamped inductive switching dynamics in lateral and vertical power DMOSFETs,” in Proc. IEEE Industry Applications Conf., 1999, pp. 1085–1092.

[46] J. McGloin and D. Sdrulla, “Estimating the temperature rise of power MOSFETs during the UIS test,” in Proc. Applied Power Electronics Conf., 1992, pp. 448–453.

[47] R. Stoltenburg, “Boundary of power-MOSFET unclamped inductive-switching (UIS) avalanche-current capability,” in Proc. Applied Power Electronics Conf., 1989, pp.

359–364.

[48] G. Van den bosch, P. Moens, P. Gassot, D. Wojciechowski, and G. Groeseneken,

“Analysis and application of energy capability characterization methods in power MOSFETs,” in Proc. European Solid-State Device Research Conf., 2004, pp. 453–456.

[49] C. Kocon, J. Zeng, and R. Stokes, “Implant spacer optimization for the improvement of power MOSFETs’ unclamped inductive switching (UIS) and high temperature breakdown,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 2000, pp.

157–160.

[50] X. Zhou, J. Ng, and J. Sin, “A novel SONOS gate power MOSFET with excellent UIS capability,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1415–1417, 2011.

[51] P. Hower, J. Lin, S. Pendharkar, B. Hu, J. Arch, J. Smith, and T. Efland, “A rugged LDMOS for LBC5 technology,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 2005, pp. 327–330.

[52] T. Khan, V. Khemka, R. Zhu, and A. Bose, “Rugged dotted-channel LDMOS structure,”

in IEDM Tech. Dig., 2008, pp. 129–132.

[53] W.-Y. Chen and M.-D. Ker, “New layout arrangement to improve ESD robustness of large-array high-voltage nLDMOS,” IEEE Electron Device Lett., vol. 31, no. 2, pp.

159–161, 2010.

[54] P. Hower and S. Merchant, “Snapback and safe operating area of LDMOS transistors,”

in IEDM Tech. Dig., 1999, pp. 193–196.

[55] Y. Taur and T. Ning, Fundamentals of modern VLSI devices. 2nd ed., Cambridge University Press, 2009.

[56] K. Kinoshita, Y. Kawaguchi, and A. Nakagawa, “A new adaptive resurf concept for 20 V LDMOS without breakdown voltage degradation at high current,” in Proc. Int. Symp.

Power Semiconductor Devices and ICs, 1998, pp. 65–68.

[57] P. Hower, J. Lin, S. Merchant, and S. Paiva, “Using adaptive resurf to improve the SOA of Ldmos transistors,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 2000, pp. 345–348.

[58] B. Bakeroot, P. Moens, M. Vermandel, and J. Doutreloigne, “Using adaptive resurf technique and field plate working to improve the safe operating area of n-type drain

extended MOS transistors,” in Proc. Int. Conf. Modeling and Simulation of Microsystems, 2001, pp. 498–501.

[59] V. Parthasarathy, V. Khemka, R. Zhu, J. Whitfield, R. Ida, and A. Bose, “Drain profile engineering of RESURF LDMOS devices for ESD ruggedness,” in Proc. Int. Symp.

Power Semiconductor Devices and ICs, 2002, pp. 265–268.

[60] T. Imoto, K. Mawatari, K. Wakiyama, T. Kobayashi, M. Yano, M. Shinohara, T.

Kinoshita, and H. Aasai, “A novel ESD protection device structure for HV-MOS ICs,” in Proc. IEEE Int. Reliab. Phys. Symp., 2009, pp. 663–668.

[61] G. Haberfehlner, S. Bychikhin, V. Dubec, M. Heer, A. Podgaynaya, M. Pfost, M. Stecher, E. Gornik, and D. Pogany, “Thermal imaging of smart power DMOS transistors in the thermally unstable regime using a compact transient interferometric mapping system,”

Microelec. Reliab., vol. 49, pp. 1346–1351, 2009.

[62] M. Pfost, D. Costachescu, A. Podgaynaya, M. Stecher, S. Bychikhin, D. Pogany, and E.

Gornik, “Small embedded sensors for accurate temperature measurements in DMOS power transistors,” in Proc. IEEE Int. Conf. Microelectronic Test Structures, 2010, pp.

3–7.

[63] E. Kobori, N. Izumi, N. Kumamoto, and Y. Hamazawa, “Efficiency of power devices using full Cu metallization technologies,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 1999, pp. 67–70.

[64] G. Van den bosch, T. Webers, E. Driessens, B. Elattari, D. Wojciechowski, P. Gassot, P.

Moens, and G. Groeseneken, “Design and characterization of a post-processed copper heat sink for smart power drivers,” in Proc. IEEE Int. Conf. Microelectronic Test Structures, 2005, pp. 27–31.

[65] Y. Chung, T. Willett, V. Macary, S. Merchant, and B Baird, “Energy capability of power devices with Cu layer integration,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 1999, pp. 63–66.

[66] F. Alagi, L. Labate, A. Andreini, and C. Contiero, “Sub-millisecond energy handling capability improvement of IC power devices with thick copper metallization,” in Proc.

Int. Symp. Power Semiconductor Devices and ICs, 2003, pp. 249–252.

[67] M. Darwish, J. Huang, M. Liu, M. Shekar, R. Williams, and M. Cornell, “Scaling issues in lateral power MOSFETs,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 1998, pp. 329–332.

[68] T. Efland, C.-Y. Tsai, and S. Pendharkar, “Lateral thinking about power devices (LDMOS),” in IEDM Tech. Dig., 1998, 679–682.

[69] V. Khemka, V. Parthasarathy, R. Zhu, A. Bose, and T. Roggenbauer, “Detection and optimization of temperature distribution across large-area power MOSFETs to improve energy capability,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 1025–1032, 2004.

[70] S. Voldman, Smart Power, LDMOS, and BCD Technology, in ESD: Failure Mechanisms and Models. John Wiley & Sons, 2009.

[71] L. Sponton, L. Cerati, G. Croce, G. Mura, S. Podda, M. Vanzi, G. Meneghesso, and E.

Zanoni, “ESD protection structures for 20 V and 40 V power supply suitable for BCD6 smart power technology,” Microelec. Reliab., vol. 42, no. 9–11, pp. 1303–1306, 2002.

[72] J.-H. Lee, J.-R. Shih, C.-S. Tang, K.-C. Liu, Y.-H. Wu, R.-Y. Shiue, T.-C. Ong, Y.-K.

Peng, and J.-T. Yue, “Novel ESD protection structure with embedded SCR LDMOS for smart power technology,” in Proc. IEEE Int. Reliab. Phys. Symp., 2002, pp. 156–161.

[73] T.-H. Lai, M.-D. Ker, W.-J. Chang, T.-H. Tang, and K.-C. Su, “High-robust ESD protection structure with embedded SCR in high-voltage CMOS process,” in Proc. IEEE Int. Reliab. Phys. Symp., 2008, pp. 627–628.

[74] V. Vashchenko and P. Hopper, “A new principle for a self-protecting power transistor array design,” in Proc. Int. Symp. Power Semiconductor Devices and ICs, 2006, pp. 1–4.

[75] V. Vashchenko and P. Hopper, “Turn-on voltage control in BSCR and LDMOS-SCR by the local blocking junction connection,” in Proc. Bipolar/BiCMOS Circuits and

Technology Meeting, 2006, pp. 1–4.

[76] T. P. Chow and B. J. Baliga, “The effect of MOS channel length on the performance of insulated gate transistors,” IEEE Electron Device Lett., vol. 6, no. 8, pp. 413–415, 1985.

[77] B. J. Baliga, M. S. Adler, P. V. Gray, and R. P. Love, “Suppressing latch-up in insulated gate transistors,” IEEE Electron Device Lett., vol. 5, no. 8, pp. 323–325, 1984.

[78] T. P. Chow, B. J. Baliga, and D. N. Pattanayak, “Counterdoping of MOS channel (CDC) - a new technique of improving suppression of latching in insulated gate bipolar transistors,” IEEE Electron Device Lett., vol. 9, no. 1, pp.29–31, 1988.

[79] R. Tadikonda, S. Hardikar, D. Green, M. Sweet, and E. Narayanan, “Analysis of lateral IGBT with a variation in lateral doping drift region in junction isolation technology,”

IEEE Trans. Electron Devices, vol. 53, no. 7, pp. 1740–1744, 2006.

[80] S. Voldman, Latchup. New York: Wiley, 2007.

[81] T. P. Chow, D. N. Pattanayak,. B. J. Baliga, and M. S. Adler, “Latching in lateral insulated gate bipolar transistors,” in IEDM Tech. Dig., 1987, pp. 774–777.

[82] Y. Chen, M. W. Lippitt, H. Chew, and W. M. Moller, “Manufacturing enhancements for CoSi2 self-aligned silicide at the 0.12-m CMOS technology node,” IEEE Trans.

Electron Devices, vol. 50, no. 10, pp. 2120–2125, 2003.

[83] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1048–1058, 2006.

[84] R. Lee, T.-Y. Liow, K.-M. Tan, A. Lim, H.-S. Wong, P.-C. Lim, D. Lai, G.-Q. Lo, C.-H.

Tung, G. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Novel Nickel-alloy silicides for source/drain contact resistance reduction in N-channel multiple-gate transistors with sub-35nm gate length,” in IEDM Tech. Dig., pp. 1–4, 2006.

[85] S. Voldman, ESD: Physics and Devices. New York: Wiley, 2004.

[86] T.-Y. Chen and M.-D. Ker, “Analysis on the dependence of layout parameters on ESD

robustness of CMOS devices for manufacturing in deep-submicron CMOS process,”

IEEE Trans. Semiconductor Manufacturing, vol. 16, no. 3, pp. 486–500, Aug. 2003.

[87] S. Voldman, S. Geissler, J. Nakos, J. Pekarik, and R. Gauthier, “Semiconductor process and structural optimization of shallow trench isolation-defined and polysilicon-bound source/drain diodes for ESD networks,” in Proc. EOS/ESD Symp., 1998, pp. 151–160.

[88] K. R. Mistry, “N-channel clamp for ESD protection in self-aligned silicided CMOS process,” U.S. Patent 5 262 344, Nov. 1993.

[89] M. Ma and A. Schoenfeld, “ESD protection using selective siliciding techniques,” U.S.

Patent 5 744 839, Apr. 1998.

[90] T.-Y. Hung and Y.-P. Hsu, “Method for manufacturing electrostatic discharge protection device,” U.S. Patent 5 937 298, Aug. 1999.

[91] D.-H. Chen, F.-M. Chiu, and L.-J. Wu, “RPO process for selective CoSix formation,”

U.S. Patent 6 468 904, Oct. 2002.

[92] A. Amerasekera, W. Abeelen, L. Roozendaal, M. Hannemann, and P. Schofield, “ESD failure modes: characteristics, mechanisms, and process influences,” IEEE Trans.

Electron Devices, vol. 39, no. 2, pp. 430–436, 1992.

[93] A. Amerasekera and C. Duvvury, “The impact of technology scaling on ESD robustness and protection circuit,” IEEE Trans. Components, Packaging, and Manufacturing Technology – Part A, vol. 18, no. 2, pp. 314–320, 1995.

[94] S. G. Beebe, “Methodology for layout design and optimization of ESD protection transistors,” in Proc. EOS/ESD Symp., 1996, pp. 265–275.

[95] D. B. Scott, P. W. Bosshart, and J. D. Gallia, “Circuit to improve electrostatic discharge protection,” U.S. Patent 5 019 888, May 1991.

[96] B. G. Carbajal, R. A. Cline, and B. H. Andresen, “A successful HBM ESD protection circuit for micron and sub-micron level CMOS,” in Proc. EOS/ESD Symp., 1992, pp.

234–242.

[97] G. Notermans, “On the use of N-well resistors for uniform triggering of ESD protection elements,” in Proc. EOS/ESD Symp., 1997, pp. 221–229.

[98] G. L. Lin and M.-D. Ker, “Fabrication of ESD protection device using a gate a s silicide blocking mask for a drain region,” U.S. Patent 6 046 087, April 2000.

[99] C.-S. Kim. H.-B. Park, Y.-G. Kim, D.-G. Kang, M.-G. Lee, S.-W. Lee, C.-H. Jeon, H.-G.

Kim, Y.-J. Yoo, and H.-S. Yoon, “A novel NMOS transistor for high performance ESD protection Devices in a 0.18µm CMOS technology utilizing salicide process,” in Proc.

EOS/ESD Symp., 2000, pp. 407–412.

[100] K. Verhaege and C. Russ, “Wafer cost reduction through design of high performance fully silicided ESD devices,” in Proc. EOS/ESD Symp., 2000, pp.18–28.

[101] K. Verhaege and C. Russ, “Novel fully silicided ballasting and MFT design techniques for ESD protection in advanced deep sub-micron CMOS technologies,” Microelec.

Reliab., vol. 41, no. 11, pp. 1739–1749, 2001.

[102] M. Okushima, “ESD protection design for mixed-power domains in 90nm CMOS with new efficient power clamp and GND current trigger (GCT) technique,” in Proc.

EOS/ESD Symp., 2006, pp. 205–213.

[103] M. Okushima, T. Shinzawa, and Y. Morishita, “Layout technique to alleviate soft failure for short pitch multi finger ESD protection device,” in Proc. EOS/ESD Symp., 2007, pp.

37–46.

[104] B. Keppens, M. Mergens, J. Armer, P. Jozwiak, G. Taylor, R. Mohn, C. Trinh, C. Russ, K.

Verhaege, and F. Ranter, “Active-area-segmentation (AAS) technique for compact, ESD robust, fully silicided NMOS design,” in Proc. EOS/ESD Symp., 2003, pp. 250–258.

[105] J.-H. Lee, Y.-H. Wu, C.-H. Tang, T.-C. Peng, S.-H. Chen, and A. Oates, “A simple and useful layout scheme to achieve uniform current distribution for multi-finger silicided grounded-gate NMOS,” in Proc. IEEE Int. Reliab. Phys. Symp., 2007, pp. 588–589.

[106] E. Worley, “New ballasting method for MOS output drivers and power bus clamps,” in

Proc. IEEE Int. Reliab. Physics Symp., 2005, pp. 458–461.

[107] S.-T. Lin, W.-F. Chen, and C. Lien, “ESD protection devices and methods for reducing trigger voltage,” U.S. Patent 7 009 252, May 2006.

[108] M.-D. Ker, W.-Y. Chen, W.-T. Shieh, and I.-J. Wei, “New layout scheme to improve ESD robustness of I/O buffers in fully-silicided CMOS process,” in Proc. EOS/ESD Symp., 2009, pp. 11–16.

[109] M. Mergens, K. Verhaege, C. Russ, J. Armer, P. Jozwiak, G. Kolluri, and L. Avery,

“Multi-finger turn-on circuits and design techniques for enhanced ESD performance and width-scaling,” in Proc. EOS/ESD Symp., 2001, pp. 1–11.

[110] S. Wolf and R. Tauber, Silicon Processing for the VLSI Era: Process Technology. Lattice Press: Sunset Beach, 1999, vol. 1.

[111] Semiconductor Industry Association, International Technology Roadmap for

Semiconductors 2007 [Online]. Available:

http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf

[112] Y. J. Huh, V. Axerad, J.-W. Chen, and P. Bendix, “The effects of substrate coupling on triggering uniformity and ESD failure threshold of fully silicided NMOS transistors,” in VLSI Tech. Dig., 2002, pp. 220–221.

[113] J.-W. Lee and Y. Li, “Effective electrostatic discharge protection circuit design using novel fully silicided N-MOSFETs in sub-100-nm device era,” IEEE Trans. Nanotech., vol. 5, no. 3, pp. 211–215, 2006.

[114] K. Bock, C. Russ, G. Badenes, G. Groeseneken, and L. Deferm, “Influence of well profile and gate length on the ESD Performance of a fully silicided 0.25m CMOS technology,” IEEE Trans. Components, Packaging, and Manufacturing Technology – part C, vol. 21, no. 4, 1998.

[115] M.-D. Ker, S.-H. Chen, and C.-H. Chuang, “ESD failure mechanism of analog I/O cells in 0.18-m CMOS technology,” IEEE Trans. Device and Mater. Reliab., vol. 6, no. 1, pp.

102–111, 2006.

[116] J.-Z. Chen, A. Amerasekera, and C. Duvvury, “Design methodology and optimization of gate-driven NMOS ESD protection circuits in submicron CMOS processes,” IEEE Trans.

Electron Devices, vol.. 45, no. 12, pp. 2448–2456, 1998.

[117] K. Kawamoto and S. Takahashi, “An advanced no-snapback LDMOSFET with optimized breakdown characteristics of drain n-n+ diodes,” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1432–1440, 2004.

[118] H.-K. Cha, I. Yun, J. Kim, B.-C. So, K. Chun, I. Nam, and K. Lee, “A 32-KB standard CMOS antifuse one-time programmable ROM embedded in a 16-bit microcontroller,”

IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2115–2124, 2006.

[119] J.-I. Miyamoto, J.-I. Tsujimoto, N. Matsukawa, S. Morita, K. Shinada, H. Nozawa, and T.

Iizuka, “An experimental 5-V-only 256-kbit CMOS EEPROM with a high-performance single-polysilicon cell,” IEEE J. Solid-State Circuits, vol. 21, no. 5, pp. 852–860, 1986.

[120] J. Wee, W. Yang, E. Ryou, J. Choi, S. Ahn, J. Chung, and S. Kim, “An antifuse EPROM circuitry scheme for field-programmable repair in DRAM,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1408–1414, 2000.

[121] S. Voldman, ESD: Circuits and Devices. New York: Wiley, 2006.

[122] M.-D. Ker, W.-Y. Chen, W.-T. Shieh, and I-J. Wei, “New ballasting layout schemes to improve ESD robustness of I/O buffers in fully-silicided CMOS process,” IEEE Trans.

Electron Devices, vol. 56, no. 12, pp. 3149–3159, 2009.

[123] T. Maloney, K. Parat, N. Clark, and A. Darwish, “Protection of high voltage power and programming pins,” IEEE Trans. Components, Packaging, and Manufacturing Technology – Part C, vol. 21, no. 4, pp. 250–256, 1998.

[124] H.-U. Schröder, G. Steenwijk, and G. Notermans, “High voltage resistant ESD

[124] H.-U. Schröder, G. Steenwijk, and G. Notermans, “High voltage resistant ESD