• 沒有找到結果。

一個關於完全齊次對稱多項式的恆等式

N/A
N/A
Protected

Academic year: 2022

Share "一個關於完全齊次對稱多項式的恆等式"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

一個關於完全齊次對稱多項式的恆等式

陳盈佑

本文旨在探討型如

m

X

i=1

an

i m

Y

j=1,j6=i

(ai−aj)

= an1

(a1−a2)(a1−a3) · · · (a1−am) + an2

(a2−a1)(a2−a3) · · · (a2−am)

+ · · · + an

m

(am−a1)(am−a2) · · · (am−am−1) 表示為諸 ai 之多項式的結果。 其中各 ai 皆相異, n 為非負整數。

研究動機為如上型式的題目曾數次出現於國外數學競賽或國內高中教師甄試中。 茲舉三例:

• Simplify:

a3

(a − b)(a − c) + b3

(b − a)(b − c) + c3

(c − a)(c − b). Ans: a + b + c.

(2006 Stanford Mathematics Tournament)

• 設 a + b + c = 3, a2+ b2+ c2 = 45.

(1) 求 a2

(a − b)(a − c)+ b2

(b − a)(b − c)+ c2

(c − a)(c − b). Ans: 1.

(2) 求 a4

(a − b)(a − c)+ b4

(b − a)(b − c)+ c4

(c − a)(c − b). Ans: a2+ b2+ c2 + ab + bc + ca = 27.

(臺北市立中正高級中學 102 學年度第 1 次專任教師甄選數學科試題)

• 若方程式 (x − a)(x − b) + (x − b)(x − c) + (x − c)(x − a) = 0 之兩根為 α, β, 則 a3

(a − α)(a − β) + b3

(b − α)(b − β) + c3

(c − α)(c − β) 之值為?

Ans: 3(a + b + c).

(國立臺中女子高級中學 103 學年度第一次教師甄選數學科試題)

(2)

由上述這些題目觀察到對於 n = 2, 3, 4, 可將 P

cyc

an

(a − b)(a − c) 表示為 a, b, c 的完全 齊次對稱多項式 (complete homogeneous symmetric polynomial), 且其次數為分子與分母 的次數差。 現探討此規律是否成立於更高次方, 乃至於更多元的情況。

我們先考慮一個更簡單的例子: 二元的情形, 即 an

a − b + bn

b − a = an− bn

a − b = an−1+ an−2b+ · · · + bn−1, n ≥ 1.

這個眾所周知的公式, 亦符合上文所述的規律性, 這個觀察使我們對該規律的一般性有了 更多信心。 另外, 我們亦有興趣了解當分子的次數低於分母時的結果。

以下先列出本文結論:

• 若 a1, a2, . . . , am 為 m 個相異數, n 為非負整數, 則

0, 當 n < m − 1, (1.1)

m

X

i=1

an

i m

Y

j=1,j6=i

(ai−aj)

= (

X

k1+k2+···+km=n−m+1,ki≥0

ak11 · ak22· · · akmm,當 n ≥ m − 1. (1.2)

(1.2) 的右式為 a1, a2, . . . , am 的 n − m + 1 次完全齊次對稱多項式。 對於 ki = 0, akii 的值取 1。

現舉三元與四元各一例如下:

a5

(a − b)(a − c) + b5

(b − a)(b − c) + c5 (c − a)(c − b)

= a3 + b3+ c3+ a2b+ a2c+ ab2+ b2c+ ac2+ bc2+ abc, a5

(a − b)(a − c)(a − d) + b5

(b − a)(b − c)(b − d) + c5

(c − a)(c − b)(c − d)

+ d5

(d − a)(d − b)(d − c)

= a2 + b2+ c2+ d2+ ab + ac + ad + bc + bd + cd.

以下證明 (1.1) 與 (1.2) 式, 其內容主要應用下列三個知識:

1. Lagrange 插值多項式

2. 取捨原理 (Principle of Inclusion and Exclusion) 3. 線性遞迴關係

(3)

一. 先證 (1.1) 式

考慮 Lagrange 插值多項式 L(x) =

m

X

i=1

 an

i m

Y

j=1,j6=i

x − aj

ai− aj



, n < m − 1,

則 deg[L(x) − xn] ≤ m − 1, 或 L(x) − xn 為零多項式。 又方程式 L(x) − xn = 0 存在 m 個相異根 a1, a2, . . . , am, 由代數基本定理知, L(x) − xn 為零多項式, 從而 xm−1 項的係數

= 0, 故 (1.1) 式成立。

二. 再證 (1.2) 式

我們先證明

m

X

i=1

am−1

i m

Q

j=1,j6=i

(ai− aj)

= 1, (2.1)

考慮 Lagrange 插值多項式 L(x) =

m

X

i=1

 am−1

i

m

Y

j=1,j6=i

x − aj

ai− aj

 ,

則 deg[L(x) − xm−1] ≤ m − 1, 或 L(x) − xm−1 為零多項式。 又方程式 L(x) − xm−1 = 0 存在 m 個相異根 a1, a2, . . . , am, 由代數基本定理知, L(x) − xm−1 為零多項式, 從而 xm−1 項的係數 = 0, 故 (2.1) 式成立。

類似的方法, 可得

m

X

i=1

am

i m

Q

j=1,j6=i

(ai− aj)

=

m

X

i=1

ai = a1+ · · · + am. (2.2)

在此只要令

L(x) =

m

X

i=1

am

i m

Y

j=1,j6=i

x − aj

ai− aj

,

則方程式 xm− L(x) = 0 有 m 個相異根 a1, a2, . . . , am, 從而 xm− L(x) =

m

Y

i=1

(x − ai);

比較 xm−1 項係數, 即得 (2.2) 式。

(4)

接著討論 (1.2) 式中, n 值更大的情形。

這部分的證明會應用到取捨原理。 本文所用的 「取捨原理」 與一般用來計算集合元素 「個 數」 之含義不同, 而是用來分析集合元素 「內容」 之方法。 說明如下:

令 A、B 為兩個集合, 我們使用 —

A+ B 表示將 A、B 兩集合的所有元素 「混合」 在一起的狀態; 而

A − B 表示在 A 集合中, 「去除」 屬於 B 集合的所有元素後的狀態 (對於屬於 B 但不 屬於 A 的元素 e, 「去除」 後將使 e 的個數為負)。

在此我們亦使用 Σ 符號來表示上述集合間 「+」 的運算, 則對於 n 個集合 A1, A2, . . . , An, 將有

A1∪ A2 ∪ · · · ∪ An=

n

X

i=1

Ai − X

1≤i<j≤n

Ai∩ Aj+ · · · + (−1)n−1A1 ∩ · · · ∩ An

=

n

X

k=1

(−1)k−1 X

1≤i1<···<ik≤n

Ai

1 ∩ · · · ∩ Aik

. (2.3)

現說明 (2.3) 式成立的理由:

若元素 a ∈ A1∪ A2∪ · · · ∪ An, 且諸集合 Ai 中恰有 k 個包含 a, 則在 (2.3) 的右式中, 元素 a 的取捨次數為

C1k− C2k+ · · · + (−1)k−1Ck

k = 1;

此等式可由 (1 − 1)k = C0k− C1k+ · · · + (−1)kCk

k 得到。

由上述知, (2.3) 式等號兩側的集合元素皆相同, 故等式成立。

令 g(k) = P

k1+k2+···+km=k,ki≥0

ak1

1 · ak22· · · akmm 為 a1, a2, . . . , am 的 k 次完全齊次對稱 多項式 (對於 ki = 0, akii 的值取 1)。 定義 G[g(k)] 為以 g(k) 的各項為元素所形成的集合, 則 G[g(k + 1)] = G[a1· g(k)] ∪ G[a2· g(k)] ∪ · · · ∪ G[am· g(k)], (2.4) 而對所有 g(k − i), 1 ≤ i ≤ k, 將有









G[ar· g(k)] ∩ G[as· g(k)] = G[ar· as· g(k − 1)], r 6= s

G[ar· g(k)] ∩ G[as· g(k)] ∩ G[at·g(k)] = G[ar·as·at·g(k − 2)], r 6= s 6= t ...

G[a1 · g(k)] ∩ · · · ∩ G[am· g(k)] = G[a1· · · am· g(k − m + 1)].

(2.5)

令 f (n) = Pm

i=1

an

i m

Q

j=1,j6=i

(ai− aj)

, n 為非負整數, 則對於不同的 n 值, 存在 m 階線性遞

(5)

迴關係, 其特徵方程式為

m

Y

i=1

(x − ai) = 0. (2.6)

由 (2.6) 式, 有 f(k + m) =Xm

i=1

ai

· f (k + m − 1) −

 X

1≤i<j≤m

aiaj

· f (k + m − 2) + · · · +(−1)m−1a1a2· · · am· f (k). (2.7) 由 (1.1), (2.1), (2.2) 式, 我們已經有 f (t) = 0 (當 t < m − 1), f(m − 1) = g(0) = 1, f(m) = g(1) =

m

P

i=1

ai。進一步地, 若對於非負整數 r ≤ k, 都有 f(m + r − 1) = g(r), 則可 利用 (2.7) 式求得 f (k + m):

觀察 (2.7) 的右式, 並引用 (2.3) 式所述之集合運算, 由上文知

Xm

i=1

ai

· f (k + m − 1) 的各項即

m

X

i=1

G[ai· g(k)],

 X

1≤i<j≤m

aiaj

· f (k + m − 2) 的各項即 X

1≤i<j≤m

G[ai· aj· g(k − 1)], ...

其餘各項類推, 且對於 t < m − 1, f(t) = 0。

以下只要由 (2.7) 的右式作為起點, 依序應用 (2.5) 各式, (2.3) 式與 (2.4) 式, 配合數學 歸納法, 即可得證 (1.2) 式。  

三. 與行列式的關聯

上文所得到的結果, 另可用於求出型如

1 a1 a2

1 · · · am−2

1 an

1

1 a2 a2

2 · · · am−2

2 an

2

1 a3 a2

3 · · · am−23 an

3

... ... ... . .. ... ... 1 am a2

m · · · am−2

m an

m

的行列式之值, 在此各 ai 皆相異, n 為正整數。

我們所討論的

m

X

i=1

an

i m

Q

j=1,j6=i

(ai− aj)

, 就是多項式L(x) =

m

X

i=1

 an

i m

Y

j=1,j6=i

x − aj

ai− aj

中, xm−1 項的係數。

(6)

其中 L(x) 的次數不高於 m − 1, 並通過 (a1, an

1), (a2, an

2), . . . , (am, an

m) 諸點。

在此我們由待定係數的角度, 來分析這個問題:

令 L(x) = C0+ C1x+ C2x2+ · · · + Cm−1xm−1, 將 (a1, an1), (a2, an2), . . . , (am, an

m), 依序代入 L(x), 得到關於 C0, C1, . . . , Cm−1 的線性聯立方程組









C0+ a1C1+ a21C2+ · · · + am−21 C

m−2+ am−11 C

m−1 = an1

C0+ a2C1+ a22C2+ · · · + am−22 C

m−2+ am−12 C

m−1 = an2

...

C0+ amC1+ a2mC2+ · · · + am−2m Cm−2+ am−1m Cm−1 = anm. 對於 Cm−1 的求值, 利用克拉瑪 (Cramer) 公式得 Cm−1 = ∆m−1

∆ , 其中

∆ =

1 a1 a21 · · · am−21 am−11 1 a2 a22 · · · am−22 am−12 1 a3 a23 · · · am−23 am−13

... ... ... ... ... ...

1 ama2

m· · · am−2m am−1

m

, ∆m−1 =

1 a1 a21 · · · am−21 an1 1 a2 a22 · · · am−22 an2 1 a3 a23 · · · am−23 an3 ... ... ... ... ... ...

1 ama2

m· · · am−2m an

m

;

這裡的 ∆ 即是有名的 Vandermonde 行列式, 其值為 Q

1≤i<j≤m

(aj − ai)。 利用我們之前已求 得的 Cm−1, 可得到 ∆m−1 的值:

1 a1 a21 · · · am−21 an1 1 a2 a22 · · · am−22 an2 1 a3 a23 · · · am−23 an3 ... ... ... ... ... ...

1 ama2

m· · · am−2m an

m

=

0, 當 n < m − 1 (這個結果很容易由行列式的性質驗證)

Q

1≤i<j≤m

(aj − ai) · P

k1+k2+···+km=n−m+1,ki≥0

ak11 · ak22· · · akmm, 當 n ≥ m − 1 (對於 ki = 0, akii 的值取 1。)

這個結果或可視為 Vandermonde 行列式的推廣。

後語

筆者偶然在網路上見到文首所列的三個題目, 對其呈現的規律性感到奧妙, 並發現其可推 廣至更高次方與更多元的情況。 嘗試用本身極其有限的數學知識證明後, 特為文以分享。

—本文作者任職新北市金鶯診所—

參考文獻

相關文件

[r]

Fomin, Enumerative Combinatorics: Volume 2 (Cambridge Studies in Advanced Mathematics Book 62),

同理, 可運用微微對偶不等式證以上幾個推廣命題, 請讀者自證,

49, Cambridge University Press, Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.. Stanley,

[r]

The Forty second William Lowell Putnam Mathematical Competition,

[r]

[r]